Tìm Giá Trị Lớn Nhất Và Giá Trị Nhỏ Nhất Của Hàm Số Lượng Giác (có Lời ...

Tài liệu miễn phí môn toán học - Tất cả các lớp
  • LỚP 12
  • LỚP 11
  • LỚP 10
  • LỚP 9
  • LỚP 8
  • LỚP 7
  • LỚP 6
LỚP 11 Chương 1: Hàm số lượng giác và phương trình lượng giác Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác (có lời giải chi tiết) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác (có lời giải chi tiết)

Cập nhật lúc: 15:11 09-08-2017 Mục tin: LỚP 11

Tìm giá trị lớn nhất và nhỏ nhất của hàm số lượng giác là một bài toán thường gặp. Học sinh thường nghĩ bài toán này khó và phải vận dụng nhiều bất đẳng thức. Tuy nhiên với tính chất cơ bản của các hàm số lượng giác thì bài toán tìm giá trị lớn nhất và nhỏ nhất của các hàm số lượng giác trở nên đơn giản hơn.

Xem thêm:

  • Xét tính chẵn lẻ của hàm số lượng giác
  • Xét tính tuần hoàn của các hàm số lượng giác
  • Tập xác định của hàm số lượng giác
  • 55 Câu Trắc Nghiệm Các Hàm Số Lượng Giác
  • Lý thuyết hàm số lượng giác
  • Chương 1: Hàm số lượng giác và phương trình lượng giác

TÌM GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ LƯỢNG GIÁC

Phương pháp: Cho hàm số \(f(x)\) xác định trên tập \(D\).

$$\eqalign{ & \bullet \,M = \mathop {max}\limits_D f\left( x \right) \Leftrightarrow \left\{ \matrix{ f\left( x \right) \le M\,\,\forall x \in D \hfill \cr \exists {x_0} \in D:\,\,f\left( x \right) = M \hfill \cr} \right. \cr & \bullet \,m = \mathop {\min }\limits_D f\left( x \right) \Leftrightarrow \left\{ \matrix{ f\left( x \right) \ge m\,\,\forall x \in D \hfill \cr \exists {x_0} \in D:\,f\left( {{x_0}} \right) = m \hfill \cr} \right. \cr} $$

Lưu ý: 

$$\eqalign{ & \bullet \, - 1 \le \sin \,x \le 1;\,\, - 1 \le \cos \,x \le 1 \cr & \bullet \,\,0 \le {\sin ^2}x \le 1;\,\,0 \le {\cos ^2}x \le 1 \cr & \bullet \,\,0 \le \sqrt {\sin \,x} \le 1;\,\,0 \le \sqrt {\cos \,x} \le 1 \cr} $$

 

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Các bài khác cùng chuyên mục

  • BÀI TẬP VẬN DỤNG CAO NHỊ THỨC NEWTON – NGUYỄN MINH TUẤN(06/11)
  • 50 bài tập trắc nghiệm quan hệ song song(26/10)
  • Lý thuyết và bài tập về phương pháp quy nạp toán học(13/07)
  • Lý thuyết phép đối xứng tâm(13/07)
  • 20 câu hỏi trắc nghiệm phép tịnh tiến(13/07)
  • PHƯƠNG PHÁP GIẢI HỆ PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN DẠNG I(04/07)
  • Lý thuyết và phân dạng bài tập phép tịnh tiến(04/07)
  • 32 bài tập trắc nghiệm phép tịnh tiến - Có lời giải chi tiết(04/07)
  • HOÁN VỊ, CHỈNH HỢP, TỔ HỢP(02/07)
  • 41 câu trắc nghiệm quy tắc đếm(02/07)

chuyên đề được quan tâm

  • Chương 1: Khảo sát và vẽ đồ thị hàm số
  • Chương 2: Hình học không gian
  • Chương 3: Hàm số mũ - hàm số logarit
  • Chương 4: Nguyên hàm - tích phân
  • Toàn bộ công thức toán học
  • Căn bậc hai, Căn bậc ba
  • Tổng hợp các đề kiểm tra 1 tiết chương 1...
  • Chương 1: Mệnh đề - Tập hợp
  • Chương 1: Hàm số lượng giác và phương trình lượng...
  • Chương 2: Tổ hợp - xác suất - nhị thức...

bài viết mới nhất

  • Các bất đẳng thức THCS cơ bản và nâng cao
  • Tính chất ba đường trung tuyến của tam giác (Phần...
  • Tính chất ba đường trung tuyến của tam giác (Phần...
  • Quan hệ giữa ba cạnh của một tam giác. Bất...
  • Quan hệ giữa ba cạnh của một tam giác. Bất...
  • Quan hệ giữa ba cạnh của một tam giác. Bất...
  • Quan hệ giữa đường vuông góc và đường xiên, đường...
  • Quan hệ giữa góc và cạnh đối diện trong một...
  • Ôn tập chương 8: Thống kê (Phần 2)
  • Ôn tập chương 8: Thống kê (Phần 1)
Gửi bài tập - Có ngay lời giải! Copyright 2025 - 2026 - toanhoc247.com

Cập nhật thông tin mới nhất của kỳ thi tốt nghiệp THPT 2025

Từ khóa » Tìm Max Của Hàm Số Lượng Giác