Tìm M để Bất Phương Trình Có Nghiệm

Tìm m để bất phương trình có nghiệm Bất phương trình chứa tham số lớp 10 Tải về Nâng cấp gói Pro để trải nghiệm website VnDoc.com KHÔNG quảng cáo, và tải file cực nhanh không chờ đợi. Mua ngay Từ 79.000đ Tìm hiểu thêm

Tìm tham số m để bất phương trình có nghiệm

  • I. Bài tập tham khảo có hướng dẫn
  • II. Bài tập tự rèn luyện củng cố kiến thức

Tìm m để bất phương trình có nghiệm môn Toán lớp 10 vừa được VnDoc.com tổng hợp và xin gửi tới bạn đọc cùng tham khảo. Bài viết được tổng hợp các dạng bài tập và hướng dẫn chi tiết về bất phương trình phổ biến trong các kì thi, bài kiểm tra trong chương trình trọng tâm Toán 10 nhằm giúp các bạn nắm vững kiến thức cơ bản, nâng cao kĩ năng tư duy bài tập. Chúc các bạn ôn tập hiệu quả!

Tài liệu do VnDoc.com biên soạn và đăng tải, nghiêm cấm các hành vi sao chép với mục đích thương mại.

Tìm m để bất phương trình có nghiệm

I. Bài tập tham khảo có hướng dẫn

Bài 1: Tìm m để bất phương trình x2 - 2(m + 1) + m2 + 2m ≤ 0 có nghiệm với mọi x ∈ [0; 1]

Hướng dẫn giải:

Đặt x2 - 2(m + 1) + m2 + 2m ≤ 0

Vậy bất phương trình có nghiệm đúng với ∀x ∈ [0; 1]

Phương trình f(x) = 0  có hai nghiệm thỏa mãn {{x}_{1}}\le 1<2\le {{x}_{2}}  \Leftrightarrow \left\{ \begin{matrix}  kf(0)\le 0 \\  kf(1)\le 0 \\  \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}  {{m}^{2}}+2m\le 0 \\  {{m}^{2}}-1\le 0 \\  \end{matrix}\Leftrightarrow -1\le m\le 0 \right.\({{x}_{1}}\le 1<2\le {{x}_{2}} \Leftrightarrow \left\{ \begin{matrix} kf(0)\le 0 \\ kf(1)\le 0 \\ \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} {{m}^{2}}+2m\le 0 \\ {{m}^{2}}-1\le 0 \\ \end{matrix}\Leftrightarrow -1\le m\le 0 \right.\)

Vậy với -1 ≤ m ≤ 0 thỏa mãn điều kiện đề bài cho.

Bài 2: Tìm m để bất phương trình sau (m + 2)x2 - 2mx + m2 + 2m ≤ 0 có nghiệm.

Hướng dẫn giải

Xét 3 trường hợp:

Trường hợp 1: Với m + 2 = 0 ⇒ m = -2 ta được:

(1) ⇔ 4x + 4 <0 ⇔ x < -1

Bất phương trình vô nghiệm

Trường hợp 2: Với m < -2

Bất phương trình đã cho cũng có nghiệm

Trường hợp 3: m + 2 > 0 ⇒ m > -2. Khi đó bất phương trình đã cho có nghiệm thì vế trái phải có 2 nghiệm phân biệt :

\Leftrightarrow \Delta >0\Leftrightarrow {{m}^{2}}-2>0\Leftrightarrow \left| m \right|>\sqrt{2}\Leftrightarrow\(\Leftrightarrow \Delta >0\Leftrightarrow {{m}^{2}}-2>0\Leftrightarrow \left| m \right|>\sqrt{2}\Leftrightarrow\) \left\{\begin{matrix} m>\sqrt{2}  \\ -2 < m <-\sqrt{2} \end{matrix}\right.\(\left\{\begin{matrix} m>\sqrt{2} \\ -2 < m <-\sqrt{2} \end{matrix}\right.\)

Vậy với |m| < \sqrt{2}\(\sqrt{2}\) thì bất phương trình có nghiệm.

Bài 3: Tìm m để bất phương trình sau có nghiệm: m2x + 3 <  mx + 4

Hướng dẫn giải:

Bất phương trình tương đương với: m2x - mx < 4 ⇔ (m2 - m)x < 1; m2 - m = 0 ⇔m = {0;1} thì bất phương trình trở thành 0 < 1 đúng với mọi x .

Nên bất phương trình có vô số nghiệm.

Với m2 - m ≠ 0 ⇔ m ≠ {0; 1} thì bất phương trình trở thành x<\frac{1}{m^{2}-m}\(x<\frac{1}{m^{2}-m}\) luôn có nghiệm là x<\frac{1}{m^{2}-m}\(x<\frac{1}{m^{2}-m}\)

Vậy bất phương trình có nghiệm với mọi giá trị thực của m.

Bài 4: Tìm tham số m để bất phương trình: f(x) = (m2 + 1)x2 + (2m - 1)x - 5 < 0

Nghiệm đúng với mọi x thuộc khoảng ( -1; 1)

Hướng dẫn giải:

Ta có:\left\{ \begin{matrix}f(-1)\le 0 \\f(1)\le 0 \\\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}{{m}^{2}}-2m-3\le 0 \\{{m}^{2}}+2m-5\le 0 \\\end{matrix}\Leftrightarrow \left\{ \begin{matrix}-1\le m\le 3 \\-\sqrt{6}\le m\le \sqrt{6}-1 \\\end{matrix} \right. \right.\(\left\{ \begin{matrix}f(-1)\le 0 \\f(1)\le 0 \\\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}{{m}^{2}}-2m-3\le 0 \\{{m}^{2}}+2m-5\le 0 \\\end{matrix}\Leftrightarrow \left\{ \begin{matrix}-1\le m\le 3 \\-\sqrt{6}\le m\le \sqrt{6}-1 \\\end{matrix} \right. \right.\)

⇔ -1 ≤ m ≤ \sqrt 6\(\sqrt 6\) - 1

Vậy để bất phương trình có nghiệm đúng với mọi x thuộc khoảng ( -1, 1) thì m ∈ (-1; \sqrt{6}\(\sqrt{6}\) - 1)

Bài 5: Tìm m để bất phương trình có nghiệm đúng với mọi x: (m + 4)x2 - 2mx + 2m - 6 < 0

Hướng dẫn giải:

+ Với m = - 4 thì bất phương trình trở thành: 8x - 14 < 0, ∀x (loại)

+ Với m\ne -4 \Rightarrow f(x) < 0,\forall x \Leftrightarrow \left\{ \begin{matrix}  a<0 \\  \Delta \(\left\{ \begin{matrix} \Delta '>0 \\ a.f(0)\ge 0 \\ \dfrac{S}{2}<0 \\ \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} {{m}^{2}}-m>0 \\ m\ge 0 \\ -m<0 \\ \end{matrix} \right.\Leftrightarrow m>1\)

Vậy m ≥ 0 thì bất phương trình có nghiệm đúng với mọi giá trị x.

II. Bài tập tự rèn luyện củng cố kiến thức

Bài 1: Cho tam thức f(x) = x2 - 2mx + 3m - 2. Tìm điều kiện của m để tam thức f(x) > 0, ∀x ∈ [1; 2] .

Bài 2: Xác định m sao cho với mọi x ta đều có: mx2 - 4x + 3m + 1 >0

Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2].

Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi ∀x ∈ (1; 2).

Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúng với mọi ∀x ∈ (-1; 3).

Bài 6: Tìm m để bất phương trình m2 - 2mx + 4 > 0 có nghiệm đúng với mọi ∀x ∈ (-1; 0,5).

Bài 7: Tìm điều kiện của m để mọi nghiệm của bất phương trình: x2 + (m - 1)x - m ≤ 0

đều là nghiệm của bất phương trình.

Bài 8: Với giá trị nào của m thì bất phương trình: (m - 2)x2 + 2mx - 2 - m < 0 có nghiệm

Bài 9: Tìm các giá trị của m để bất phương trình:f(x) = - (m2 + 2)x2 - 2mx + 1 - m > 0

Nghiệm đúng với mọi x thuộc nửa khoảng (2; +∞)

Bài 10: Tìm giá trị của tham số m khác 0 để bất phương trình f(x) = 2mx2 - (1 - 5m)x + 3m+ 1>0 có nghiệm đúng với mọi x thuộc khoảng (-2; 0).

-------------------------------------------

Mời bạn đọc tham khảo thêm một số tài liệu liên quan đến bài học:

  • Bài tập công thức lượng giác lớp 10
  • Bảng công thức lượng giác dùng cho lớp 10 - 11 - 12
  • 10 bộ đề thi học kì 1 môn Toán lớp 10
  • Tìm m để bất phương trình nghiệm đúng với mọi x
  • Tìm m để bất phương trình vô nghiệm

Trên đây là Tìm m để bất phương trình có nghiệm VnDoc.com giới thiệu tới quý thầy cô và bạn đọc. Chắc hẳn qua bài viết các bạn đã nắm được những ý chính cũng như trau dồi được nội dung kiến thức của bài học rồi đúng không ạ? Bài viết được tổng hợp gồm có bài tập tham khảo có hướng dẫn và bài tập tự rèn luyện củng cố kiến thức. Hi vọng qua bài viết bạn đọc có thêm nhiều tài liệu để học tập tốt hơn môn Toán lớp 10 nhé. Ngoài ra VnDoc mời độc giả tham khảo thêm tài liệu ôn tập một số môn học được chúng tôi biên soạn và tổng hợp tại các mục: Tiếng anh lớp 10, Vật lí lớp 10, Ngữ văn lớp 10 ,...

Từ khóa » Các điều Kiện để Bất Phương Trình Có Nghiệm