Tìm M để Bất Phương Trình Vô Nghiệm
Có thể bạn quan tâm
Tìm tham số m để bất phương trình vô nghiệm
- I. Lí thuyết cần nhớ
- II. Bài tập ví dụ minh họa
- III. Bài tập tự rèn luyện củng cố kiến thức
Tìm m để bất phương trình vô nghiệm vừa được VnDoc.com biên soạn và xin gửi tới bạn đọc cùng tham khảo. Mời các bạn cùng theo dõi bài viết dưới đây nhé.
Tài liệu do VnDoc.com biên soạn và đăng tải, nghiêm cấm các hành vi sao chép với mục đích thương mại.
Tìm m để bất phương trình vô nghiệm
I. Lí thuyết cần nhớ
Cho hàm số \(f\left( x \right)=a{{x}^{2}}+bx+c:\)
\(f(x)<0\) vô nghiệm với \(\forall x\in \mathbb{R}\Leftrightarrow f(x)\ge 0\) có nghiệm với \(\forall x\in \mathbb{R}\)
\(\Rightarrow \left[ \begin{matrix} a=0 \\ \left\{ \begin{matrix} a>0 \\ \Delta \le 0 \\ \end{matrix} \right. \\ \end{matrix} \right.\)
\(f(x)>0\) vô nghiệm với \(\forall x\in \mathbb{R}\Leftrightarrow f(x)\le 0\) có nghiệm với \(\forall x\in \mathbb{R}\)
\(\Rightarrow \left[ \begin{matrix} a=0 \\ \left\{ \begin{matrix} a<0 \\ \Delta \le 0 \\ \end{matrix} \right. \\ \end{matrix} \right.\)
\(f(x)\le 0\) vô nghiệm với \(\forall x\in \mathbb{R}\Leftrightarrow f(x)>0\) có nghiệm với \(\forall x\in \mathbb{R}\)
\(\Rightarrow \left[ \begin{matrix} a=0 \\ \left\{ \begin{matrix} a>0 \\ \Delta <0 \\ \end{matrix} \right. \\ \end{matrix} \right.\)
\(f(x)\ge 0\) vô nghiệm với \(\forall x\in \mathbb{R}\Leftrightarrow f(x)<0\) có nghiệm với \(\forall x\in \mathbb{R}\)
\(\Rightarrow \left[ \begin{matrix} a=0 \\ \left\{ \begin{matrix} a<0 \\ \Delta <0 \\ \end{matrix} \right. \\ \end{matrix} \right.\)
II. Bài tập ví dụ minh họa
Ví dụ 1: Tìm m để BPT \(\left( m+2 \right){{x}^{2}}+\left( m+3 \right)x-m>0\) vô nghiệm với mọi \(x\in \mathbb{R}\)
Hướng dẫn giải
TH1: \(m+2=0\Leftrightarrow m=-2 \Leftrightarrow -x+2>0\)
Vậy m = -2 thì bất phương trình có nghiệm
TH2: \(m+2\ne 0\Leftrightarrow m\ne -2\)
Để bất phương trình \(f(x)>0\) vô nghiệm \(x\in \mathbb{R}\) thì \(f(x)\le 0\) có nghiệm với \(x\in \mathbb{R}\)
\(\Leftrightarrow \left\{ \begin{matrix} a<0 \\ \Delta \le 0 \\ \end{matrix} \right. \Rightarrow \left\{ \begin{matrix} m+2<0 \\ {{(m+3)}^{2}}+4\left( m+2 \right)\le 0 \\ \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} m<-2 \\ 5{{m}^{2}}+14m+9\le 0 \\ \end{matrix} \right.\)
\(\Leftrightarrow \left\{ \begin{matrix} m <-2 \\ m\in [\dfrac{-9}{5};-1] \\ \end{matrix}\right.\)
Vậy không có giá trị nào của m để bất phương trình vô nghiệm
Ví dụ 2: Cho bất phương trình \(m{{x}^{2}}-{{m}^{2}}-mx+4>0\). Tìm m để bất phương trình vô nghiệm \(\forall x\in \mathbb{R}\)
Hướng dẫn giải
TH1: \(m=0\Leftrightarrow 4>0\) (loại)
TH2: \(m\ne 0\)
Để bất phương trình \(f(x)>0\) vô nghiệm \(x\in \mathbb{R}\) thì \(f(x)\le 0\) có nghiệm với mọi \(x\in \mathbb{R}\)
\(\Leftrightarrow \left\{ \begin{matrix} a<0 \\ \Delta \le 0 \\ \end{matrix} \right. \Rightarrow\left\{ \begin{matrix} m<0 \\ \Delta \le 0 \\ \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} m<0 \\ {{m}^{2}}-4m\left( 4-{{m}^{2}} \right)\le 0 \\ \end{matrix}\Leftrightarrow m\in (-\infty ,\frac{-1-\sqrt{257}}{8}] \right.$\)
Vậy BPT vô nghiệm khi \(m\in (-\infty ,\frac{-1-\sqrt{257}}{8}]\)
Ví dụ 3: Cho bất phương trình \(m{{x}^{2}}-2\left( m+1 \right)x+m+7\le 0\). Tìm m để bất phương trình vô nghiệm \(\forall x\in \mathbb{R}\)
Hướng dẫn giải
TH1: \(m=0\Leftrightarrow 7\le 0\) (loại)
TH2: \(m\ne 0\)
Để bất phương trình \(f(x)\le 0\) vô nghiệm \(x\in \mathbb{R}\) thì \(f(x)>0\) có nghiệm với mọi \(x\in \mathbb{R}\)
\(\Leftrightarrow \left\{ \begin{matrix} a>0 \\ \Delta <0 \\ \end{matrix} \right.\)
Từ khóa » định M để Bất Phương Trình Có Vô Số Nghiệm
-
định M để Bpt M(x-1)>2mx-3 Có Vô Số Nghiệm Câu Hỏi 725690
-
Định M để Bất Phương Trình Có Vô Số Nghiệm - Hàng Hiệu
-
Tìm M để Bất Phương Trình Vô Nghiệm | Chuyên đề Toán
-
TOÁN 10 - TÌM M ĐỂ BẤT PHƯƠNG TRÌNH VÔ NGHIỆM ... - YouTube
-
Tìm M để Bất Phương Trình Có Vô Số Nghiệm
-
Tìm M để Bất Phương Trình Có Nghiệm
-
Công Thức Phương Trình, Bất Phương Trình Có Vô Số Nghiệm Khi ...
-
Tìm M để Bất Phương Trình Có Nghiệm Ôn Tập Toán 10
-
Điều Kiện để Bất Phương Trình Có Vô Số Nghiệm
-
Tìm M để Phương Trình Có Vô Số Nghiệm: A) (m + 2)x + 2 = 3x + 2m - 3
-
Giải Và Biện Luận Bất Phương Trình Bậc Nhất Một ẩn
-
Bài Toán Về Tìm Tham Số M Sao Cho Phương Trình Vô Nghiệm/vô Số ...
-
Bất Phương Trình (m-1)x +3>0 Có Vô Số Nghiệm Khi - Hoc24
-
Cách Giải Bất Phương Trình Bậc 2 Chứa Tham Số Hay Nhất - Top Lời Giải