Tìm M để Hàm Số đồng Biến, Nghịch Biến Trên R

Tìm m để hàm số đồng biến, nghịch biến trên R là tài liệu vô cùng hữu ích mà THPT Nguyễn Đình Chiểu muốn giới thiệu đến quý thầy cô cùng các bạn lớp 12 tham khảo.

Các bài tập tìm m để hàm số đồng biến, nghịch biến trên R được biên soạn theo mức độ từ dễ đến khó theo chương trình toán lớp 12 giúp bạn đọc dễ dàng tiếp cận nhất. Thông qua tài liệu này các bạn nhanh chóng nắm vững kiến thức, giải nhanh được các bài tập Toán 12. Bên cạnh đó các bạn tham khảo thêm Bài tập trắc nghiệm sự đồng biến và nghịch biến của hàm số.

Bạn đang xem: Tìm m để hàm số đồng biến, nghịch biến trên R

I. Phương pháp giải tìm m để hàm số đồng biến, nghịch biến trên mathbb{R}

– Định lí: Cho hàm số y=fleft( x right) có đạo hàm trên khoảng left( a,b right):

Related Articles
  • Bài tập cuối tuần lớp 3 môn Tiếng Việt Kết nối tri thức Học kì 1

    Bài tập cuối tuần lớp 3 môn Tiếng Việt Kết nối tri thức Học kì 1

    Tháng sáu 24, 2024
  • Bài dự thi tìm hiểu tư tưởng Hồ Chí Minh về Công an nhân dân

    Bài dự thi tìm hiểu tư tưởng Hồ Chí Minh về Công an nhân dân

    Tháng sáu 24, 2024
  • Đề thi khảo sát chất lượng đầu năm môn Tiếng Anh lớp 3 năm 2023 – 2024

    Đề thi khảo sát chất lượng đầu năm môn Tiếng Anh lớp 3 năm 2023 – 2024

    Tháng sáu 24, 2024
  • Đáp án Tìm hiểu về công tác cải cách hành chính tỉnh Hà Nam 2023

    Đáp án Tìm hiểu về công tác cải cách hành chính tỉnh Hà Nam 2023

    Tháng sáu 24, 2024

+ Hàm số y=fleft( x right) đồng biến trên khoảng left( a,b right) khi và chỉ khi f'left( x right)ge 0 với mọi giá trị x thuộc khoảng left( a,b right). Dấu bằng xảy ra tại hữu hạn điểm.

+ Hàm số y=fleft( x right) nghịch biến trên khoảng left( a,b right) khi và chỉ khi f'left( x right)le 0 với mọi giá trị x thuộc khoảng left( a,b right). Dấu bằng xảy ra tại hữu hạn điểm.

– Để giải bài toán này trước tiên chúng ta cần biết rằng điều kiện để hàm số y=f(x) đồng biến trên R thì điều kiện trước tiên hàm số phải xác định trên mathbb{R}.

+ Giả sử hàm số y=f(x) xác định và liên tục và có đạo hàm trên mathbb{R}. Khi đó hàm số y=f(x) đơn điệu trên mathbb{R} khi và chỉ khi thỏa mãn hai điều kiện sau:

  • Hàm số y=f(x) xác định trên mathbb{R}.
  • Hàm số y=f(x) có đạo hàm không đổi dấu trên mathbb{R}.

+ Đối với hàm số đa thức bậc nhất:

  • Hàm số y = ax + b (a ne 0) đồng biến trên mathbb{R} khi và chỉ khi a > 0.
  • Hàm số y = ax + b (a ne 0) nghịch biến trên mathbb{R} khi và chỉ khi a < 0.

– Đây là dạng bài toán thường gặp đối với hàm số đa thức bậc 3. Nên ta sẽ áp dụng như sau:

Xét hàm số y=a{{x}^{3}}+b{{x}^{2}}+cx+dRightarrow y'=3a{{x}^{2}}+2bx+c

TH1: a=0 (nếu có tham số)

TH2: ane 0

+ Hàm số đồng biến trên 0 \

Delta le 0 \

end{matrix} right.” width=”112″ height=”49″ data-latex=”mathbb{R}Leftrightarrow left{ begin{matrix}

a>0 \

Delta le 0 \

end{matrix} right.” data-i=”23″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%5Cmathbb%7BR%7D%5CLeftrightarrow%20%5Cleft%5C%7B%20%5Cbegin%7Bmatrix%7D%0A%0Aa%3E0%20%5C%5C%0A%0A%5CDelta%20%5Cle%200%20%5C%5C%0A%0A%5Cend%7Bmatrix%7D%20%5Cright.”>

+ Hàm số nghịch biến trên <img alt="mathbb{R}Leftrightarrow left{ begin{matrix}

a<0 \

Delta le 0 \

end{matrix} right." width="112" height="49" data-latex="mathbb{R}Leftrightarrow left{ begin{matrix}

a

Chú ý: Hàm số đa thức bậc chẵn không thể đơn điệu trên R được.

– Các bước tìm điều kiện của m để hàm số đồng biến, nghịch biến trên mathbb{R}

Bước 1. Tìm tập xác định mathbb{R}.

Bước 2. Tính đạo hàm y’ = f’(x).

Bước 3. Biện luận giá trị m theo bảng quy tắc.

Bước 4. Kết luận giá trị m thỏa mãn.

II. Ví dụ minh họa tìm m để hàm số đồng biến, nghịch biến trên R

Ví dụ 1: Cho hàm số y=-frac{1}{3}{{x}^{3}}+m{{x}^{2}}+left( 3m-2 right)x+1. Tìm tất cả giá trị của m để hàm số nghịch biến trên mathbb{R}.

A. left( -2,-1 right) B. left[ -2,-1 right]
C.left( -infty ,-2 right)cup left( -1,+infty right) D. left( -infty ,-2 right]cup left[ -1,+infty right)

Hướng dẫn giải

Ta có: y'=-{{x}^{2}}+2mx+3m-2

Hàm số nghịch biến trên <img alt="mathbb{R}Leftrightarrow left{ begin{matrix}

a<0 \

Delta le 0 \

end{matrix} right.Leftrightarrow left{ begin{matrix}

-1<0 \

4{{m}^{2}}-4left( 3m-2 right)le 0 \

end{matrix}Leftrightarrow {{m}^{2}}-3m+2le 0 right.Leftrightarrow min left[ -2,-1 right]" width="638" height="49" data-latex="mathbb{R}Leftrightarrow left{ begin{matrix}

a<0 \

Delta le 0 \

end{matrix} right.Leftrightarrow left{ begin{matrix}

-1

Đáp án B

Ví dụ 2: Cho hàm số y=frac{1}{3}left( m-1 right){{x}^{3}}-left( m-1 right){{x}^{2}}-x+1. Tìm m để hàm số nghịch biến trên mathbb{R}.

A. -3le mle 1 B. 0le mle 1
C.left( 0,1 right] D. left[ 0,1 right)

Hướng dẫn giải

Ta có: y'=left( m-1 right){{x}^{2}}-2left( m-1 right)x-1

TH1: <img alt="m-1=0Rightarrow m=1Rightarrow y'=-1<0" width="288" height="23" data-latex="m-1=0Rightarrow m=1Rightarrow y'=-1. Hàm số nghịch biến trên mathbb{R}

TH2: mne 1. Hàm số nghịch biến trên mathbb{R} khi:

<img alt="left{ begin{matrix}

a<0 \

Delta 'le 0 \

end{matrix} right.Leftrightarrow left{ begin{matrix}

m<1 \

{{left( m-1 right)}^{2}}+left( m-1 right)le 0 \

end{matrix}Leftrightarrow left{ begin{matrix}

m<1 \

{{m}^{2}}-mle 0 \

end{matrix} right. right.Leftrightarrow min left[ 0,1 right)" width="569" height="52" data-latex="left{ begin{matrix}

a<0 \

Delta 'le 0 \

end{matrix} right.Leftrightarrow left{ begin{matrix}

m<1 \

{{left( m-1 right)}^{2}}+left( m-1 right)le 0 \

end{matrix}Leftrightarrow left{ begin{matrix}

m

Đáp án D

Ví dụ 3: Tìm m để hàm số y={{x}^{3}}+2left( m+1 right){{x}^{2}}-3mx+5m-2 đồng biến trên mathbb{R}.

A. -4le mle -frac{1}{4} <img alt="B. -4< m< -frac{1}{4}" width="143" height="41" data-latex="B. -4< m
<img style="margin:0;padding:0;border:0;font:inherit;cursor:zoom-in;height:60px;max-width:100%;vertical-align:middle;width:108px" src="https://o.rada.vn/data/image/holder.png" alt="C.left[ begin{matrix}

m-frac{1}{4} \

end{matrix} right.” width=”108″ height=”60″ data-latex=”C.left[ begin{matrix}

m-frac{1}{4} \

end{matrix} right.” data-i=”52″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=C.%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%0Am%3C-4%20%5C%5C%0A%0Am%3E-%5Cfrac%7B1%7D%7B4%7D%20%5C%5C%0A%0A%5Cend%7Bmatrix%7D%20%5Cright.”>

D. left[ begin{matrix} mle -4 \ mge -dfrac{1}{4} \ end{matrix} right.

Hướng dẫn giải

y'=3{{x}^{2}}+4left( m+1 right)x-3m

Để hàm số đồng biến trên mathbb{R} thì:

0 \

Delta ‘le 0 \

end{matrix} right.Leftrightarrow left{ begin{matrix}

1>0 \

4{{left( m+1 right)}^{2}}+9m \

end{matrix}Leftrightarrow min left[ -4,-frac{1}{4} right] right.” width=”403″ height=”52″ data-latex=”left{ begin{matrix}

a>0 \

Delta ‘le 0 \

end{matrix} right.Leftrightarrow left{ begin{matrix}

1>0 \

4{{left( m+1 right)}^{2}}+9m \

end{matrix}Leftrightarrow min left[ -4,-frac{1}{4} right] right.” data-i=”56″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%5Cleft%5C%7B%20%5Cbegin%7Bmatrix%7D%0A%0Aa%3E0%20%5C%5C%0A%0A%5CDelta%20%27%5Cle%200%20%5C%5C%0A%0A%5Cend%7Bmatrix%7D%20%5Cright.%5CLeftrightarrow%20%5Cleft%5C%7B%20%5Cbegin%7Bmatrix%7D%0A%0A1%3E0%20%5C%5C%0A%0A4%7B%7B%5Cleft(%20m%2B1%20%5Cright)%7D%5E%7B2%7D%7D%2B9m%20%5C%5C%0A%0A%5Cend%7Bmatrix%7D%5CLeftrightarrow%20m%5Cin%20%5Cleft%5B%20-4%2C-%5Cfrac%7B1%7D%7B4%7D%20%5Cright%5D%20%5Cright.”>

Đáp án A

Ví dụ 4: Cho hàm số y=frac{1-m}{3}{{x}^{3}}-2left( 2-m right){{x}^{2}}+2left( 2-m right)x+5. Tìm tất cả giá trị của m sao cho hàm số luôn nghịch biến.

Hướng dẫn giải

Tập xác định: D=mathbb{R}

Tính đạo hàm: y'=left( 1-m right){{x}^{2}}-4left( 2-m right)x+4-2m

TH1: Với m = 1 ta có y'=-4x+2le 0Leftrightarrow xge frac{1}{2}

Vậy m = 1 không thỏa mãn điều kiện đề bài.

TH2: Với mne 1 ta có:

Hàm số luôn nghịch biến <img style="margin:0;padding:0;border:0;font:inherit;cursor:zoom-in;height:48px;max-width:100%;vertical-align:middle;width:455px" src="https://o.rada.vn/data/image/holder.png" alt="Leftrightarrow left{ begin{matrix}

1-m1 \

2le mle 3 \

end{matrix}Leftrightarrow right.2le mle 3″ width=”455″ height=”48″ data-latex=”Leftrightarrow left{ begin{matrix}

1-m1 \

2le mle 3 \

end{matrix}Leftrightarrow right.2le mle 3″ data-i=”62″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=%5CLeftrightarrow%20%5Cleft%5C%7B%20%5Cbegin%7Bmatrix%7D%0A%0A1-m%3C0%20%5C%5C%0A%0A2%7B%7Bm%7D%5E%7B2%7D%7D-10m%2B12%5Cle%200%20%5C%5C%0A%0A%5Cend%7Bmatrix%7D%20%5Cright.%5CLeftrightarrow%20%5Cleft%5C%7B%20%5Cbegin%7Bmatrix%7D%0A%0Am%3E1%20%5C%5C%0A%0A2%5Cle%20m%5Cle%203%20%5C%5C%0A%0A%5Cend%7Bmatrix%7D%5CLeftrightarrow%20%5Cright.2%5Cle%20m%5Cle%203″>

Ví dụ 5: Tìm m để hàm số y=frac{1}{3}left( m+3 right){{x}^{3}}-2{{x}^{2}}+mx nghịch biến trên mathbb{R}

Hướng dẫn giải

Tập xác định: D=mathbb{R}

Đạo hàm: y'=left( m+3 right){{x}^{2}}-4x+m

TH1: Với m = -3 Rightarrow y'=-4x-3Rightarrow m=-3(thỏa mãn)

Vậy m = -3 hàm số nghịch biến trên mathbb{R}

TH2: Với mne -3

Hàm số nghịch biến trên mathbb{R} khi y'le 0,forall x

<img alt="begin{align}

& Rightarrow left( m+3 right){{x}^{2}}-4x+mle 0,forall xRightarrow left{ begin{matrix}

m+3<0 \

-{{m}^{2}}-3m+4le 0 \

end{matrix} right. \

& Leftrightarrow mle -4 \

end{align}" width="467" height="72" data-latex="begin{align}

& Rightarrow left( m+3 right){{x}^{2}}-4x+mle 0,forall xRightarrow left{ begin{matrix}

m+3

II. Bài tập tự luyện tìm m để hàm số đồng biến, nghịch biến trên R

Câu 1: Hàm số nào đồng biến trên mathbb{R}?

A. fleft( x right)={{x}^{4}}-4{{x}^{2}}+4 B. fleft( x right)={{x}^{3}}+3{{x}^{2}}+10x+2
C.fleft( x right)=-frac{4}{5}{{x}^{5}}+frac{4}{3}{{x}^{3}}-x D. fleft( x right)={{x}^{3}}+10x-{{cos }^{2}}x

Câu 2: Cho hàm số y=a{{x}^{3}}+b{{x}^{2}}+cx+d. Hỏi hàm số đồng biến trên khi nào?

<img alt="A. left[ begin{matrix}

a=b=c=0 \

a<0,{{b}^{2}}-3ac<0 \

end{matrix} right." width="191" height="49" data-latex="A. left[ begin{matrix}

a=b=c=0 \

a<0,{{b}^{2}}-3ac

0 \

a0 \

a

0 \

a>0,{{b}^{2}}-3acle 0 \

end{matrix} right.” width=”191″ height=”49″ data-latex=”C. left[ begin{matrix}

a=b=0,c>0 \

a>0,{{b}^{2}}-3acle 0 \

end{matrix} right.” data-i=”81″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=C.%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%0Aa%3Db%3D0%2Cc%3E0%20%5C%5C%0A%0Aa%3E0%2C%7B%7Bb%7D%5E%7B2%7D%7D-3ac%5Cle%200%20%5C%5C%0A%0A%5Cend%7Bmatrix%7D%20%5Cright.”>

0 \

a>0,{{b}^{2}}-3acge 0 \

end{matrix} right.” width=”192″ height=”49″ data-latex=”D. left[ begin{matrix}

a=b=0,c>0 \

a>0,{{b}^{2}}-3acge 0 \

end{matrix} right.” data-i=”82″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=D.%20%5Cleft%5B%20%5Cbegin%7Bmatrix%7D%0A%0Aa%3Db%3D0%2Cc%3E0%20%5C%5C%0A%0Aa%3E0%2C%7B%7Bb%7D%5E%7B2%7D%7D-3ac%5Cge%200%20%5C%5C%0A%0A%5Cend%7Bmatrix%7D%20%5Cright.”>

Câu 3: Cho các hàm số sau:

(1): y=-{{x}^{3}}+3{{x}^{2}}-3x+1

(2): y=-sqrt{{{x}^{3}}+2}

(3): y=-2x+sin x

(4): y=frac{2-x}{x-1}

Hàm số nào nghịch biến trên mathbb{R}?

A. left( 1 right),left( 2 right) B. left( 1 right),left( 2 right),left( 3 right)
C. left( 1 right),left( 2 right),left( 4 right) D. left( 2 right),left( 3 right)

Câu 4: Tìm tất cả các giá trị của tham số m sao cho hàm số y=-frac{1}{3}{{x}^{3}}-m{{x}^{2}}+left( 2m-3 right)x+2-m luôn nghịch biến trên mathbb{R}

A. -3le mle 1 B. mle 1
<img alt="C.-3< m< 1" width="121" height="19" data-latex="C.-3< m D. mge -3

Câu 5: Tìm tất cả các giá trị m để hàm số y=fleft( x right)=mcos x+x luôn đồng biến trên mathbb{R}

A. -1le mle 1 frac{sqrt{3}}{2}” width=”95″ height=”47″ data-latex=”B. m>frac{sqrt{3}}{2}” data-i=”101″ class=”lazy” data-src=”https://tex.vdoc.vn/?tex=B.%20m%3E%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D”>
<img alt="C.m<frac{1}{2}" width="80" height="41" data-latex="C.m D. left[ begin{matrix} mge 1 \ mle -1 \ end{matrix} right.

Câu 6: Cho hàm số y=frac{1}{3}{{x}^{3}}+m{{x}^{2}}-mx-m. Tìm giá trị nhỏ nhất của m để hàm số luôn đồng biến trên mathbb{R}

A. m=0 B. m=-1
C.m=-5 D. m=-6

Câu 7: Cho hàm số y = f(x) = x3 – 6x2 + 9x – 1. Phương trình f(x) = -13 có bao nhiêu nghiệm?

A. 0 B. 3
C. 2 D. 1

Câu 8: Xác định giá trị của m để hàm số y = dfrac{1}{2} x3 – mx2 + (m + 2)x – (3m – 1) đồng biến trên mathbb{R}

A. m < -1 B. m > 2
C. -1 ≤ m ≤ 2 D.-1 < m < 2

Câu 9: Tìm tất cả các giá trị thực của m sao cho hàm số y = dfrac{1}{3} x3 – mx2 +(2m – 3) – m + 2 luôn nghịch biến trên mathbb{R}

A. -3 ≤ m ≤ 1 B. m ≤ 2
C. m ≤ -3; m ≥ 1 D. -3 < m < 1

Câu 10: Tìm m để hàm số đồng biến trên khoảng y = x3 – 3mx2 đồng biến trên mathbb{R}

A. m ≥ 0 B. m ≤ 0
C. m < 0 D. m =0

Câu 11: Cho hàm số: y = dfrac{-1}{3} x3 + (m +1)x2 – (m + 1) + 2. Tìm các giá trị của tham số m sao cho hàm số đồng biến trên tập xác định của nó.

A. m > 4 B. -2 ≤ m ≤ -1
C. m < 2 D. m < 4

Câu 12: Cho hàm số: y = dfrac{-1}{3}x3 + 2x2 – mx + 2. Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên tập xác định của nó.

A. m ≥ 4 B. m ≤ 4
C. m > 4 D. m < 4

Câu 13: Tìm tham số m để hàm số y=frac{{x - m}}{{x + 1}} đồng biến trên tập xác định của chúng:

A. m ≥ -1 B. m ≤ -1
C. m ≤ 1 D. m ≥ 2

Câu 14: Tìm tất cả các giá trị của tham số m để hàm số:

a. y = (m + 2).frac{x^3}{3} – ( m + 2)x2 – (3m – 1)x + m2 đồng biến trên mathbb{R} .

b. y = (m – 1)x3 – 3(m – 1)x2 + 3(2m – 3)x + m nghịch biến trên mathbb{R}.

Đăng bởi: THPT Nguyễn Đình Chiểu

Chuyên mục: Tài Liệu Lớp 12

Từ khóa » Hàm Số đồng Biến Trên R Thì Delta