Tìm Nghiệm Của Phương Trình Lượng Giác Trên ...

Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn

A. Phương pháp giải

+ Để giải phương trình trên khoảng (a;b) ( hoặc trên đoạn) thì ta cần:

• Bước 1. Tìm họ nghiệm của phương trình đã cho.

• Bước 2. Giải bất phương trình:

⇒ Các giá trị nguyên của k=... ⇒ các nghiệm của phương trình trong khoảng ( đoạn ) đã cho.

+ Để giải bất phương trình có chứa điều kiện ta cần:

• Bươc 1. Tìm điều kiện xác định của phương trình ( nếu có).

• Bước 2.Biến đổi phương trình đưa về phương trình lượng giác cơ bản

• Bước 3. Giải phương trình lượng giác cơ bản

• Bước 4. Kết hợp với điều kiện xác định ⇒ nghiệm của phương trình .

Hỏi đáp VietJack

B. Ví dụ minh họa

Ví dụ 1. Tìm nghiệm của phương trình: tanx = 1 trên đoạn (0; 1800 )

A. 450; 1350

B. 1350

C. 450

D. Đáp án khác

Lời giải

Ta có; tanx = 1 ⇔ tanx = 450

⇔ x= 450+ k.1800 với k∈ Z.

+Để 00 < x < 1800 thì 00 < 450+ k. 1800 < 1800

⇔ - 450 < k.1800 < 1350

⇔ (- 45)/180 < k < 135/180

Mà k nguyên nên k= 1. Khi đó;x= 450

Vậy phương trình tanx= 1 có một nghiệm thuộc khoảng (00; 1800)

Chọn C.

Ví dụ 2. Tìm tổng các nghiệm của phương trình cosx = sinx trên đoạn [0;π]

A. 3π/4

B. π/2

C. π/4

D. Đáp án khác

Lời giải

Ta có: cosx = sinx ⇒ cos x= cos( π/2-x)

Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

⇔ x= π/4+kπ

Xét các nghiệm trên đoạn [0; π] ta có:

0 < π/4+kπ < π ⇔ - π/4 < kπ < 3π/4

⇔ (- 1)/4 < k < 3/4

Mà k nguyên nên k= 0. Khi đó; x= π/4

Chọn C.

Ví dụ 3. Cho phương trình tan(x+ π/3) = √3. Tìm số nghiệm của phương trình đã cho trên khoảng ( 0; 6π ) .

A. 3

B.4

C. 5

D. 6

Lời giải

Ta có: tan(x+ π/3) = √3 ⇔ tan(x+ π/3) = tan π/3

⇒ x+ π/3= π/3+kπ ⇒ x= kπ với k nguyên

Xét các nghiệm của phương trình trên khoảng ( 0; 6π) thỏa mãn:

0 < kπ < 6π < ⇒ 0 < k < 6

Do k nguyên nên k∈{ 1;2;3;4;5}

Vậy số nghiệm của phương trình đã cho trên(0; 6π) là 5.

Chọn C.

Ví dụ 4. Cho phương trình cos(x+ 300) = cos( x + 900) . Tính số nghiệm của phương trình trên đoạn [1800; 6300]

A.3

B.2

C. 4

D. 5

Lời giải

Ta có: cos(x+ 300) = cos(x+ 900)

Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

Các nghiệm của phương trình trên đoạn[ 1800; 6300] thỏa mãn:

⇔ 1800 ≤ 300+k1800 ≤ 6300

⇔ 1500 ≤ k1800 ≤ 6000 ⇔ 5/6 ≤ k ≤ 10/3

Mà k nguyên nên k∈ { 1; 2; 3}

Vậy số nghiệm của phương trình đã cho trên [1800; 6300] là 3

Chọn A.

Ví dụ 5. Cho phương trình cot(x- 300) = tanx. Tìm số nghiệm của phương trình đã cho trên khoảng ( - 2700; 00)

A.4

B. 3

C. 5

D.2

Lời giải

Ta có: cot(x- 300)= tanx ⇔ cot( x- 300) =cot( 900- x)

⇔ x- 300 = 900 – x+ k.1800

⇔ 2x= 1200 + k.1800 ⇔ x= 600 + k. 1800

Các nghiệm của phương trình đã cho trên khoảng (-2700; 00) thỏa mãn:

- 2700 < 600+ k.1800 < 00

⇔ -3300 < k.1800 < - 600

⇔ (- 33)/18 < k < (-1)/3

Mà k nguyên nên k∈ {-2; -1}

Vậy có hai nghiệm của phương trình đã cho trên khoảng( -2700; 00)

Chọn D.

Ví dụ 6. Cho phương trình: √3cos⁡x+m-1=0. Với giá trị nào của m thì phương trình có nghiệm:

A.m < 1-√3 .

B.m > 1+√3 .

C.1-√3≤ m ≤1+√3 .

D. -√3 ≤m≤ √3 .

Hướng dẫn giải:

Chọn C.

Ta có:Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11 có nghiệm khi và chỉ khi :

Ta có:Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

Ví dụ 7. Cho phương trình sin( x+ π/6)= 1/2. Tìm tổng các nghiệm của phương trình trên đoạn [0; π]

A. π/6

B. π/3

C. x= 4π/3

D. x= 2π/3

Lời giải

Ta có: sin( x+ π/6)= 1/2 ⇒ sin( x+ π/6)= sin π/6

Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

+ Xét họ nghiệm x= k2π. Ta có:

0 ≤ k2π ≤ π ⇒ 0 ≤ k ≤ 1/2

Mà k nguyên nên k= 0 . Khi đó; nghiệm của phương trình là x= 0

+ Xét họ nghiệm x=2π/3+k2π . Ta có:

0 ≤ 2π/3+ k2π ≤ π ⇔ (- 2)/3 ≤ k ≤ 1/6

Mà k nguyên nên k= 0. Khi đó; x= 2π/3

Vậy trên đoạn [0; π] phương trình đã cho có 2 nghiệm là x= 0 và x= 2π/3

⇒ Tổng hai nghiệm là 2π/3

Chọn D.

Ví dụ 8. Cho phương trình tan ( x+ 450 )= √3. Tìm các nghiệm của phương trình trên khoảng (900 ;3600 )

A. 1750

B.1950

C. 2150

D. Đáp án khác

Lời giải

Ta có: tan(x+ 450 ) = √3 ⇔ tan(x+ 450 ) = tan 600

⇔ x+ 450 =600 + k.1800

< x= 150 +k.1800

Các nghiệm của phương trình trên khoảng (900 ; 3600 ) thỏa mãn:

900 < 150 + k.1800 < 3600

< 750 < k.1800 < 3450

< 75/180 < k < 345/180

Mà k nguyên nên k= 1

Với k = 1 ta có x= 1950

Chọn B.

Ví dụ 9. Cho phương trình sinx = 0.Biết số nghiệm của phương trình trên khoảng (00; a0) là 3. Tìm điều kiện của a.

A. a > 540

B. a > 360

C.a > 270

D. a > 630

Lời giải

Ta có: sinx=0 ⇒ x= k.1800 với k nguyên

Ta xét số nghiệm cua phương trình trên khoảng (00; a0)

00 < k.1800 < a0

⇒ 0 < k < a/180 (1)

Do phương trình đã cho có đúng 3 nghiệm trên khoảng (00;a0) nên k∈{1;2;3} (2)

Từ (1) và (2) suy ra: a/180 > 3 ⇔ a > 540

Vậy điều kiện của a là a > 540.

Chọn A.

Ví dụ 10. Số nghiệm của phương trình tanx= tan3π/11 trên khoảng( π/4;2π) là?

A. 1

B.2

C. 3

D. 4

Lời Giải.

Chọn B.

Ta có tanx = tan(3π/11) ⇔ x=3π/11+kπ k∈Z

Do x∈( π/4;2π) nên π/4 < 3π/11+kπ < 2π

⇔ 1/4 < 3/11+k < 2 ⇔ (- 1)/44 < k < 19/11

Mà k nguyên nên k ∈{ 0;1}

Tương ứng với hai giá trị của k cho ta hai nghiệm của phương trình đã cho thỏa mãn điều kiện đề bài.

Ví dụ 11. Số nghiệm của phương trình: sin ( x- π/4)=(- 1)/√2 với là:

A.1

B. 2

C. 3

D. 4

Lời giải

Chọn D

Ta có: sin(x- π/4)=(- 1)/√2 ⇒ sin(x- π/4)=sin⁡(- π/4)

Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

+ Xét họ nghiệm x = k2π với π ≤ x ≤ 5π

⇒ π ≤ k2π ≤ 5π ⇒ 1/2 ≤ x ≤ 5/2

Mà k nguyên nên k=1 hoặc k= 2

⇒ Họ nghiệm này cho ta hai nghiệm thỏa mãn điều kiện .

+ Xét họ nghiệm x= 3π/2+k2π với π ≤ x ≤ 5π

⇒ π ≤ 3π/2+k2π ≤ 5π ⇒ 1/2 ≤ x ≤ 5/2

Vì k nguyên nên k∈{0;1}.

⇒ Họ nghiệm này cho ta hai nghiệm của x thỏa mãn điều kiện .

Vậy phương trình đã cho có bốn nghiệm thỏa mãn điều kiện.

Chọn D.

Ví dụ 12. Số nghiệm của phương trình: cos⁡(x+π/3)= √2/2 với 0 ≤ x ≤ 2π là:

A. 0.

B. 2.

C. 1.

D. 3.

Lời giải

Chọn D

Ta có: cos⁡(x+π/3)= √2/2 ⇒ cos⁡(x+π/3)= cos π/4

Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

+ Xét họ nghiệm: x= -π/12+k2π

Để 0 ≤ x ≤ 2π thì 0 ≤ -π/12+k2π ≤ 2π

⇔ π/12 ≤ k2π ≤ 25π/12 ⇔ 1/24 ≤ k ≤ 25/24

Mà k nguyên nên k = 1 khi đó x= 23π/12

+ Xét họ nghiệm x= -7π/12+k2π

Để 0 ≤ x ≤ 2π thì 0 ≤ -7π/12+k2π ≤ 2π

⇔ 7π/12 ≤ k2π ≤ 31π/12 ⇔ 7/24 ≤ k ≤ 31/24

Mà k nguyên nên k = 1 khi đó x= 17π/12

Vậy phương trình có hai nghiệm 0 ≤ x ≤ 2π là: x= 23π/12 và x= 17π/12

Chọn B.

C. Bài tập vận dụng

Câu 1:Phương trình cosx= m+ 1 có nghiệm khi m là

A.-1≤m≤1 .

B.m≤0 .

C.m≥-2 .

D.-2≤m≤0 .

Câu 2:Nghiệm âm lớn nhất và nghiệm dương nhỏ của phương trình sin4x + cos5x=0 theo thứ tự là:

A.Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

B.Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

C.Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

D.Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

Câu 3:Tìm tổng các nghiệm của phương trình trên

A. 7π/18

B. 4π/18

C. 47π/8

D. 47π/18

Câu 4:Trong nửa khoảng , phương trình cos2x+ sinx=0 có tập nghiệm là

A.Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

B.Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

C.Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

D.Tìm nghiệm của phương trình lượng giác trên khoảng, đoạn - Toán lớp 11

Câu 5:Cho phương trình √6 sinx- (3√2)/2=0 . Tìm số nghiệm của phương trình trên khoảng ( 0; 4π) ?

A. 4

B. 5

C. 6

D. 7

Câu 6:Cho phương trình sin(x+ 100) = cos( x- 200). Tìm số nghiêm của phương trình trên khoảng (900 ; 3600)?

A.0

B.1

C.2

D.4

Câu 7:Tìm số nghiệm của phương trình sinx= cos ( 2x- 300) trên khoảng ( 600; 3600)

A.0

B.2

C.3

D.1

Câu 8: Cho phương trình: √6 cot⁡(π/2-x)+ √2=0. Tìm số nghiệm của phương trình trên khoảng ( π;4π) ?

A. 2

B.3

C .4

D. 5

Câu 9:Cho phương trình sinx + √3.sin π/6=0. Tìm số nghiệm của phương trình trên khoảng ( 4π;10π) ?

A. 5

B. 6

C. 7

D . 4 Lời giải

Từ khóa » Tổng Các Nghiệm Của Phương Trình Trên Khoảng Là