Tính Chất đường Trung Trực Của đoạn Thẳng, Của Tam Giác

  1. Trang chủ
  2. Lý thuyết toán học
  3. Toán 7
  4. CHƯƠNG 7: QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY TRONG TAM GIÁC
  5. Tính chất đường trung trực của đoạn thẳng, của tam giác
Tính chất đường trung trực của đoạn thẳng, của tam giác Trang trước Mục Lục Trang sau

I. Các kiến thức cần nhớ

1. Tính chất đường trung trực của một đoạn thẳng

Trên hình vẽ trên, $d$ là đường trung trực của đoạn thẳng $AB.$ Ta cũng nói: $A$ đối xứng với $B$ qua $d.$

Nhận xét:

Tập hợp các điểm cách đều hai mút của một đoạn thẳng là đường trung trực của đoạn thẳng đó.

2. Tính chất ba đường trung trực của tam giác

Trên hình, điểm $O$ là giao điểm các đường trung trực của \(\Delta ABC.\) Ta có \(OA = OB = OC.\) Điểm $O$ là tâm đường tròn ngoại tiếp \(\Delta ABC.\)

II. Các dạng toán thường gặp

Dạng 1: Chứng minh đường trung trực của một đoạn thẳng

Phương pháp:

Để chúng minh \(d\) là đường trung trực của đoạn thẳng \(AB\), ta chứng minh \(d\) chứa hai điểm cách đều \(A\) và \(B\) hoặc dùng định nghĩa đường trung trực.

Dạng 2: Chứng minh hai đoạn thẳng bằng nhau

Phương pháp:

Ta sử dụng định lý: “Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.”

Dạng 3: Bài toán về giá trị nhỏ nhất

Phương pháp:

- Sử dụng tính chất đường trung trực để thay độ dài một đoạn thẳng thành độ dài một đoạn thẳng khác bằng nó.

- Sử dụng bất đẳng thức tam giác để tìm giá trị nhỏ nhất.

Dạng 4: Xác định tâm đường tròn ngoại tiếp tam giác

Phương pháp:

Sử dụng tính chất giao điểm các đường trung trực của tam giác

Định lý: Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.

Dạng 5: Bài toán liên quan đến đường trung trực đối với tam giác cân

Phương pháp:

Chú ý rằng trong tam giác cân, đường trung trực của cạnh đáy đồng thời là đường trung tuyến , đường phân giác ứng với cạnh đáy này.

Dạng 6: Bài toán liên quan đến đường trung trực đối với tam giác vuông

Phương pháp:

Ta chú ý rằng: Trong tam giác vuông, giao điểm các đường trung trực là trung điểm cạnh huyền

Trang trước Mục Lục Trang sau

Có thể bạn quan tâm:

  • Ôn tập chương 7
  • Ôn tập chương 5: Tứ giác
  • Phép đối xứng trục
  • Ôn tập chương phép biến hình
  • Cung chứa góc

Tài liệu

Toán 7 - Phiếu bài tập - Hai đường thẳng vuông góc (Lý thuyết + Bài tập)

Toán 7 - Phiếu bài tập  - Hai đường thẳng vuông góc (Lý thuyết + Bài tập)

Sách giáo khoa Toán 6 tập 1 - Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa Toán 6 tập 1 - Kết Nối Tri Thức Với Cuộc Sống

Tạp chí toán học và tuổi trẻ số 487 - 01/2018

Tạp chí toán học và tuổi trẻ số 487 - 01/2018

Toán 7 - Phiếu bài tập - Từ vuông góc đến song song (Lý thuyết + Bài tập từ cơ bản đến nâng cao)

Toán 7 - Phiếu bài tập - Từ vuông góc đến song song (Lý thuyết + Bài tập từ cơ bản đến nâng cao)

Tạp chí toán học và tuổi trẻ số 490 - 04/2018

Tạp chí toán học và tuổi trẻ số 490 - 04/2018

Từ khóa » Hai đường Thẳng Trung Trực