Tính đạo Hàm Của Hàm Số \(y = \frac{1}{{\sin 2x}}\).
Có thể bạn quan tâm
- Câu hỏi:
Tính đạo hàm của hàm số \(y = \frac{1}{{\sin 2x}}\).
- A. \(y' = - \frac{{\cos 2x}}{{{{\sin }^2}2x}}\)
- B. \(y' = \frac{{2\cos 2x}}{{{{\sin }^2}2x}}\)
- C. \(y' = - \frac{{2\cos x}}{{{{\sin }^2}2x}}\)
- D. \(y' = - \frac{{2\cos 2x}}{{{{\sin }^2}2x}}\)
Lời giải tham khảo:
Đáp án đúng: D
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 91721
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi HK2 môn Toán 11 năm 2018 - 2019 Trường THPT Đoàn Thượng
50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Biết \({\rm{lim}}{u_n} = 5;{\rm{lim}}{v_n} = a;{\rm{lim}}\left( {{u_n} + 3{v_n}} \right) = 2019\), khi đó \(a\) bằng
- Giá trị của \(\lim \frac{1}{{{n^k}}}\left( {k \in {N^*}} \right)\) bằng
- Cho hình chóp S.ABCD, ABCD là hình thang vuông tại A và B, \(AD = 2a,AB = BC = a,SA \bot \left( {ABCD} \right)\). Trong các khẳng định sau, khẳng định nào sai?
- Tính đạo hàm của hàm số \(y = \frac{1}{{\sin 2x}}\).
- Cho hình lập phương ABCD.ABCD (tham khảo hình vẽ) có cạnh bằng \(a\). Tính \(\overrightarrow {AB} .\overrightarrow {DC} \).
- Vi phân của hàm số \(f\left( x \right) = \cos x\) tại điểm \(x = \frac{\pi }{6}\) ứng với \(\Delta x = 0,01\) là
- Tìm hệ số góc của tiếp tuyến của (C) tại điểm M , biết hàm số \(y=f(x)\) có đồ thị (C) và điểm \(M\left( {{x_0};\,{y_0}} \right) \in \left( C \right)\).
- Cho tứ diện ABCD, gọi I, J lần lượt là trọng tâm các tam giác ABC và ABD. Khẳng định nào sau đây là sai?
- Tìm mệnh đề nào sau đây sai
- Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2}\). Có bao nhiêu tiếp tuyến của đồ thị hàm số \(f(x)\) song song với đường thẳng \(y = 9x + 5\).
- Biết \(\lim \frac{{1 + {3^n}}}{{{3^{n + 1}}}} = \frac{a}{b}\) (\(a, b\) là hai số tự nhiên và \(\frac{a}{b}\) tối giản). Giá trị của \(a+b\) bằng
- Cho hình chóp S.ABC có các cạnh SA, SB, SC đôi một vuông góc và SA = SB = SC. Gọi I là trung điểm của AB. Khi đó góc giữa hai đường thẳng SI và BC bằng
- Tính giới hạn \(\mathop {\lim }\limits_{} \frac{{ - 3n + 2}}{{n + 3}}\).
- Cho hình lăng trụ đều ABC.ABC có tất cả các cạnh bằng \(a\). Gọi M là trung điểm của AB và \(\alpha \) là góc tạo bởi MC' và mặt phẳng (ABC). Khi đó \(\tan \alpha \) bằng
- Tìm m biết \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x - m\sqrt {{x^2} + 2} }}{{x + 2}} = 2\).
- Đạo hàm của hàm số \(y = {\sin ^6}x + {\cos ^6}x + 3{\sin ^2}x{\cos ^2}x\) là
- Hàm số \(y=f(x)\) có đồ thị như hình dưới đây, gián đoạn tại điểm có hoành độ bằng bao nhiêu?
- Trong các mệnh đề sau, mệnh đề nào sai? Hình hộp có các cạnh bằng nhau gọi là hình lập phương
- Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {\frac{{{x^2} - 1}}{{x - 1}}}{{khi}} {x \ne 1}\\ {m - 2}{{khi}} {x = 1} \end{array}} \right.\). Tìm m để hàm liên tục trên R.
- Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh \(a\), SA vuông góc với mặt phẳng đáy. Tính khoảng cách giữa hai đường thẳng SA và BC.
- Xét phương trình sau trên tập số thực \({x^{2019}} + x = a{\rm{ }}\left( 1 \right)\). Chọn khẳng định đúng trong các khẳng định dưới đây.
- Tính giới hạn của \(\mathop {\lim }\limits_{x \to - \,\infty } \left( {2{x^3} - {x^2} + 1} \right)\)
- Cho tứ diện ABCD có \(\left( {ACD} \right) \bot \left( {BCD} \right)\), \(AC = AD = BC = BD = a\) và \(CD=2x\). Gọi I, J lần lượt là trung điểm của AB và CD. Với giá trị nào của \(x\) thì \(\left( {ABC} \right) \bot \left( {ABD} \right)\)?
- Cho hàm số \(y=f(x)\) có đạo hàm trên tập số thực. Mệnh đề nào dưới đây đúng.
- Cho hình chóp S.ABC có đáy là tam giác vuông tại B, \(AB = 3a,BC = 4a\), mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết \(SB = 2a\sqrt 3 \) và \(\widehat {SBC} = 30^\circ \). Tính \(d\left( {B;\,\left( {SAC} \right)} \right)\).
- Tính gia tốc của chuyển động tại thời điểm vận tốc triệt tiêu biết chuyển động thẳng xác định bởi phương trình: \(S\left( t \right) = {t^3} + 3{t^2} - 9t + 27\), trong đó t tính bằng giây (s) và S được tính bằng mét (m)
- Cho hàm số \(f\left( x \right) = \frac{{x - 2}}{{x - 1}}\). Tính \(f(x)\) ?
- Trong không gian cho đường thẳng \(\Delta\) và điểm O. Qua O có bao nhiêu đường thẳng vuông góc với \(\Delta\)?
- Hãy chỉ ra mệnh đề sai biết hình chóp S.ABCD có đáy ABCD là hình vuông tâm O
- Cho hàm số \(f\left( x \right) = {x^3} + 2x\), giá trị của \(f\left( 1 \right)\) bằng
- Cho hàm số \(f\left( x \right) = - {x^3} + 3m{x^2} - 12x + 3\) với m là tham số thực. Số giá trị nguyên của m để \(f'\left( x \right) \le 0\) với \(\forall x \in R\) là
- Cho hai hàm số \(f\left( x \right) = \frac{1}{{x\sqrt 2 }}\) và \(g\left( x \right) = \frac{{{x^2}}}{{\sqrt 2 }}\).Góc giữa hai tiếp tuyến của mỗi đồ thị hàm số đã cho tại giao điểm của chúng là
- Vi phân của hàm số \(y\,\, = \,\cos 2x + \cot x\) là
- Cho hàm số \(y=\sin 2x\). Hãy chọn hệ thức đúng.
- Cho hình hộp ABCD.EFGH (tham khảo hình vẽ). Tính tổng ba véctơ \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AE} \) ta được
- Cho hàm số \(f\left( x \right) = \sqrt {{x^2} + 3} \). Tính giá trị của biểu thức \(S = f\left( 1 \right) + 4f\left( 1 \right)\).
- Trong các giới hạn sau, giới hạn nào bằng \( + \infty \).
- Lập phương trình tiếp tuyến của đồ thị hàm số y=x^2+3x+1 tại điểm có hoành độ bằng 1
- Cho lăng trụ đứng ABC.ABC có đáy là \(\Delta ABC\) vuông tại B (tham khảo hình vẽ). Hỏi đường thẳng B'C' vuông góc với mặt phẳng nào được liệt kê ở bốn phương án dưới đây?
- Đạo hàm của hàm số \(y = \frac{1}{2}\sin 2x + \cos x\) tại \({x_0} = \frac{\pi }{2}\) bằng
- Cho đường thẳng d vuông góc với mặt phẳng \(\left( \alpha \right)\) và đường thẳng \(\Delta\) khác d. Chọn khẳng định sai trong các khẳng định sau
- Cho hàm số \(f\left( x \right) = \frac{{2x - 3}}{{{x^2} - 1}}\). Mệnh đề nào sau đây đúng?
- Biết rằng phương trình \({x^5} + {x^3} + 3x - 1 = 0\) có duy nhất một nghiệm \(x_0\), mệnh đề nào dưới đây đúng.
- Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và các cạnh bên bằng nhau. Gọi O là giao điểm của hai đường chéo của đáy. Tìm mặt phẳng vuông góc với SO?
- Cho hàm số \(f(x)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {{2019}^ + }} f\left( x \right) = - 2019\) và \(\mathop {\lim }\limits_{x \to {{2019}^ - }} f\left( x \right) = 2019\). Khẳng định nào sau đây đúng?
- Tính giới hạn của \(\mathop {\lim }\limits_{x \to 2} \frac{{2x + 1}}{{x - 1}}\)
- Hình chóp S.ABCD có đáy là hình vuông, hai mặt bên (SAB) và (SAD) vuông góc với mặt đáy. AH, AK lần lượt là đường cao của tam giác SAB, tam giác SAD. Mệnh đề nào sau đây là sai?
- Trên đồ thị (C) của hàm số \(y = {x^3} - 3x\) có bao nhiêu điểm M mà tiếp tuyến với (C) tại M cắt (C) tai điểm thứ hai N thỏa mãn \(MN = \sqrt {333} \).
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng \(a\), hai tam giác SAB và SAD vuông cân tại A. Gọi G là trọng tâm tam giác SAB. Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua G và song song với SB và AD. Thiết diện tạo bởi mặt phẳng \(\left( \alpha \right)\) và hình chóp S.ABCD có diện tích bằng
- Cho \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + ax + b}}{{{x^2} - 1}} = \frac{{ - 1}}{2}\quad \left( {a,b \in R} \right). Tổng \(S = {a^2} + {b^2}\) bằng
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 11
Toán 11
Toán 11 Kết Nối Tri Thức
Toán 11 Chân Trời Sáng Tạo
Toán 11 Cánh Diều
Giải bài tập Toán 11 KNTT
Giải bài tập Toán 11 CTST
Trắc nghiệm Toán 11
Ngữ văn 11
Ngữ Văn 11 Kết Nối Tri Thức
Ngữ Văn 11 Chân Trời Sáng Tạo
Ngữ Văn 11 Cánh Diều
Soạn Văn 11 Kết Nối Tri Thức
Soạn Văn 11 Chân Trời Sáng Tạo
Văn mẫu 11
Tiếng Anh 11
Tiếng Anh 11 Kết Nối Tri Thức
Tiếng Anh 11 Chân Trời Sáng Tạo
Tiếng Anh 11 Cánh Diều
Trắc nghiệm Tiếng Anh 11 KNTT
Trắc nghiệm Tiếng Anh 11 CTST
Tài liệu Tiếng Anh 11
Vật lý 11
Vật lý 11 Kết Nối Tri Thức
Vật Lý 11 Chân Trời Sáng Tạo
Vật lý 11 Cánh Diều
Giải bài tập Vật Lý 11 KNTT
Giải bài tập Vật Lý 11 CTST
Trắc nghiệm Vật Lý 11
Hoá học 11
Hoá học 11 Kết Nối Tri Thức
Hoá học 11 Chân Trời Sáng Tạo
Hoá Học 11 Cánh Diều
Giải bài tập Hoá 11 KNTT
Giải bài tập Hoá 11 CTST
Trắc nghiệm Hoá học 11
Sinh học 11
Sinh học 11 Kết Nối Tri Thức
Sinh Học 11 Chân Trời Sáng Tạo
Sinh Học 11 Cánh Diều
Giải bài tập Sinh học 11 KNTT
Giải bài tập Sinh học 11 CTST
Trắc nghiệm Sinh học 11
Lịch sử 11
Lịch Sử 11 Kết Nối Tri Thức
Lịch Sử 11 Chân Trời Sáng Tạo
Giải bài tập Sử 11 KNTT
Giải bài tập Sử 11 CTST
Trắc nghiệm Lịch Sử 11
Địa lý 11
Địa Lý 11 Kết Nối Tri Thức
Địa Lý 11 Chân Trời Sáng Tạo
Giải bài tập Địa 11 KNTT
Giải bài tập Địa 11 CTST
Trắc nghiệm Địa lý 11
GDKT & PL 11
GDKT & PL 11 Kết Nối Tri Thức
GDKT & PL 11 Chân Trời Sáng Tạo
Giải bài tập KTPL 11 KNTT
Giải bài tập KTPL 11 CTST
Trắc nghiệm GDKT & PL 11
Công nghệ 11
Công nghệ 11 Kết Nối Tri Thức
Công nghệ 11 Cánh Diều
Giải bài tập Công nghệ 11 KNTT
Giải bài tập Công nghệ 11 Cánh Diều
Trắc nghiệm Công nghệ 11
Tin học 11
Tin học 11 Kết Nối Tri Thức
Tin học 11 Cánh Diều
Giải bài tập Tin học 11 KNTT
Giải bài tập Tin học 11 Cánh Diều
Trắc nghiệm Tin học 11
Cộng đồng
Hỏi đáp lớp 11
Tư liệu lớp 11
Xem nhiều nhất tuần
Đề thi HK1 lớp 11
Đề thi HK2 lớp 12
Đề thi giữa HK1 lớp 11
Đề thi giữa HK2 lớp 11
Video bồi dưỡng HSG môn Toán
Công nghệ 11 Bài 16: Công nghệ chế tạo phôi
Vội vàng
Lưu biệt khi xuất dương
Hầu trời- Tản Đà
Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ
Giới hạn hàm số
Cấp số cộng
Giới hạn của dãy số
Cấp số nhân
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » đạo Hàm Của 1/sin2x
-
Tính đạo Hàm Của \(y = \frac{1}{{\sin 2x}}\) - HOC247
-
Tīm đạo Hàm Của Y=1+sin(2x) Câu Hỏi 730231
-
Tìm Đạo Hàm - D/dx Sin(2x) | Mathway
-
Đạo Hàm Sin2x - Đạo Hàm Lượng Giác
-
Đạo Hàm Của Hàm Số (y = Sin 2x ) Là:
-
Cách Tìm Đạo Hàm Sin2x. Bài Tập Vận Dụng Có Đáp Án - Marathon
-
Đạo Hàm Của Hàm Số $y = \sin 2x$ Là
-
[LỜI GIẢI] Tính đạo Hàm Của Hàm Số Sin^2x? - Tự Học 365
-
[LỜI GIẢI] Đạo Hàm Của Hàm Số Y = Sin ( 2x + 1 ) - Cos ( 1 - X ) Là
-
Đạo Hàm Của Hàm Số (y = Dfrac{1}{2}sin 2x + Cos X ...