Tính Diện Tích Hình Phẳng Giới Hạn Bởi Parabol Y=x^2-2x Và đường ...

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Tính diện tích hình phẳng giới hạn bởi parabol y=x^2-2x và đường thẳng y=x. Tính diện tích hình phẳng giới hạn bởi parabol y=x^2-2x và đường thẳng y=x.

Câu hỏi

Nhận biết

Tính diện tích hình phẳng giới hạn bởi parabol \(y={{x}^{2}}-2x\) và đường thẳng \(y=x.\)

A. \(\frac{9}{2}.\)   B.  \(\frac{11}{6}.\) C.  \(\frac{27}{6}.\)  D. \(\frac{17}{6}.\)

Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) là nghiệm phương trình: \({{x}^{2}}-2x=x\Leftrightarrow \left[ \begin{align}  & x=0 \\  & x=3 \\ \end{align} \right..\)

Vậy diện tích hình phẳng cần tính là \(S=\int\limits_{0}^{3}{\left| {{x}^{2}}-3x \right|\,\text{d}x}=\int\limits_{0}^{3}{\left( 3x-{{x}^{2}} \right)\,\text{d}x}=\left. \left( \frac{3{{x}^{2}}}{2}-\frac{{{x}^{3}}}{3} \right) \right|_{0}^{3}=\frac{9}{2}.\)

Chọn A

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • câu 2 

    câu 2 

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Diện Tích Hình Phẳng Giới Hạn Bởi Parabol Y=(x-2)^2