Tính M để Phương Trình Bậc Hai Có Hai Nghiệm Trái Dấu
Có thể bạn quan tâm
Chuyên đề luyện thi vào 10: Tìm m để phương trình có hai nghiệm phân biệt trái dấu, cùng dấu, cùng dấu âm, cùng dấu dương
- I. Kiến thức cần nhớ khi làm dạng bài tìm m để phương trình có hai nghiệm trái dấu
- II. Bài tập ví dụ về bài toán tìm m để phương trình có hai nghiệm cùng dấu
- III. Bài tập tự luyện về bài toán tìm m để phương trình có hai nghiệm cùng dấu dương, hai nghiệm cùng dấu âm
Tìm m để phương trình có hai nghiệm trái dấu cung cấp cho các em phần lý thuyết cơ bản và một số dạng bài tập để các em biết cách làm các bài toán Tìm m để phương trình có hai nghiệm trái dấu. Mời các bạn tham khảo.
I. Kiến thức cần nhớ khi làm dạng bài tìm m để phương trình có hai nghiệm trái dấu
Công thức nghiệm phương trình bậc hai
Phương trình bậc hai có dạng ax2 + bx + c = 0 (a ≠ 0)
∆ = b2 – 4ac
Nếu ∆ < 0 thì phương trình vô nghiệm
Nếu ∆ = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - b}}{a}\)
Nếu ∆ > 0 thì phương trình có 2 nghiệm phân biệt:
\({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\)
Định lý Vi-ét:
Nếu phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm \({x_1};{x_2}\) phân biệt thì \(\left\{ \begin{array}{l} S = {x_1} + {x_2} = \frac{{ - b}}{a}\\ P = {x_1}{x_2} = \frac{c}{a} \end{array} \right.\)
+ Lưu ý: Trước khi áp dụng định lý Vi ét, ta cần tìm điều kiện để phương trình có 2 nghiệm phân biệt.
2. Xác định dấu các nghiệm của phương trình bậc hai:
Điều kiện để phương trình có hai nghiệm trái dấu, cùng dấu, cùng dương, cùng âm,…
+ Để phương trình có hai nghiệm phân biệt trái dấu \(\Leftrightarrow P < 0\)
+ Để phương trình có hai nghiệm phân biệt cùng dấu \(\Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P > 0 \end{array} \right.\)
+ Để phương trình có hai nghiệm phân biệt cùng dấu dương \(\Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P > 0\\ S > 0 \end{array} \right.\)
+ Để phương trình có hai nghiệm phân biệt cùng dấu âm \(\Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P > 0\\ S < 0 \end{array} \right.\)
II. Bài tập ví dụ về bài toán tìm m để phương trình có hai nghiệm cùng dấu
Bài 1: Tìm m để phương trình \({x^2} - \left( {{m^2} + 1} \right)x + {m^2} - 7m + 12 = 0\) có 2 nghiệm trái dấu
Hướng dẫn:
Để phương trình có hai nghiệm phân biệt trái dấu \(\Leftrightarrow P < 0\).
Lời giải:
Để phương trình có hai nghiệm phân biệt trái dấu \(\Leftrightarrow P < 0\)
\(\begin{array}{l} \Leftrightarrow {m^2} - 7m + 12 < 0\\ \Leftrightarrow \left( {m - 3} \right)\left( {m - 4} \right) < 0 \end{array}\)
Xảy ra hai trường hợp:
Trường hợp 1: \(\left\{ \begin{array}{l} m - 3 > 0\\ m - 4 < 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m > 3\\ m < 4 \end{array} \right. \Leftrightarrow 3 < m < 4\)
Trường hợp 2: \(\left\{ \begin{array}{l} m - 3 < 0\\ m - 4 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m < 3\\ m > 4 \end{array} \right.\)(vô lý)
Vậy với 3 < m < 4 thì phương trình có hai nghiệm trái dấu
Bài 2: Tìm m để phương trình \(3{x^2} - 4mx + {m^2} - 2m - 3 = 0\) có hai nghiệm phân biệt cùng dấu.
Hướng dẫn:
Để phương trình có hai nghiệm phân biệt cùng dấu \(\Leftrightarrow \left\{ \begin{gathered} \Delta ' > 0 \hfill \\ P > 0 \hfill \\ S > 0 \hfill \\ \end{gathered} \right.\)
Lời giải:
Để phương trình có hai nghiệm cùng dấu dương
Từ khóa » Với Giá Trị Nào Của M Thì Phương Trình Có Hai Nghiệm Trái Dấu
-
Tìm M để Phương Trình Bậc Hai Có Hai Nghiệm Cùng Dấu, Trái Dấu
-
Tìm M để Phương Trình Có 2 Nghiệm Trái Dấu
-
Tìm M để Phương Trình Bậc Hai Có Hai Nghiệm Cùng Dấu, Trái Dấu
-
Với Giá Trị Nào Của M Thì Phương Trình Có 2 Nghiệm Trái Dấu.
-
Tìm M để Phương Trình Có Hai Nghiệm Trái Dấu
-
4)x^2 + 5x + M = 0 Có 2 Nghiệm Trái Dấu? - Toán Học Lớp 10 - Lazi
-
Điều Kiện để Phương Trình Bậc Hai Có Nghiệm Dương, âm, Trái Dấu
-
Tìm Các Giá Trị Của M để Phương Trình Có Hai Nghiệm Trái Dấu
-
Với Giá Trị Nào Của M Thì Phương Trình (m(x^2)
-
Tìm Các Giá Trị Của (m ) để Phương Trình ((x^2)
-
Tìm Tất Cả Các Giá Trị Của Tham Số M để Phương Trình Có Hai Nghiệm ...