Toán 10- Về Công Thức Nghiệm Của Các Bất đẳng Thức, Bpt

Cộng đồng Học sinh Việt Nam - HOCMAI Forum Cộng đồng Học sinh Việt Nam - HOCMAI Forum
  • Diễn đàn Bài viết mới Tìm kiếm trên diễn đàn
  • Đăng bài nhanh
  • Có gì mới? Bài viết mới New media New media comments Status mới Hoạt động mới
  • Thư viện ảnh New media New comments Search media
  • Story
  • Thành viên Đang truy cập Đăng trạng thái mới Tìm kiếm status cá nhân
Đăng nhập Đăng ký

Tìm kiếm

Everywhere Đề tài thảo luận This forum This thread Chỉ tìm trong tiêu đề By: Search Tìm nâng cao… Everywhere Đề tài thảo luận This forum This thread Chỉ tìm trong tiêu đề By: Search Advanced…
  • Bài viết mới
  • Tìm kiếm trên diễn đàn
Menu Install the app Install -Toán 10- Về công thức nghiệm của các bất đẳng thức, bpt
  • Thread starter tuanduy_bmt
  • Ngày gửi 2 Tháng hai 2009
  • Replies 4
  • Views 7,724
  • Bạn có 1 Tin nhắn và 1 Thông báo mới. [Xem hướng dẫn] để sử dụng diễn đàn tốt hơn trên điện thoại
  • Diễn đàn
  • TOÁN
  • TRUNG HỌC PHỔ THÔNG
  • Toán lớp 10
  • Bất đẳng thức. Bất phương trình
You are using an out of date browser. It may not display this or other websites correctly.You should upgrade or use an alternative browser. T

tuanduy_bmt

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

I, Phương trình, bất phương trình chứa dấu giá trị tuyệt đối:mad: (Không biết dấu trị tuyệt đối ở đâu cả:confused:kí hiệu tạm là [ ] nhé! [f(x)] > g(x) [f(x)] < g(x) [f(x)] > [g(x)] II, Pt,bpt chứa dấu căn thức (post sau nhá- ai biết thì post và chỉ giải giùm tớ luôn! Không cần giải cụ thể chỉ cần hướng dẫn tớ cách nhận biết và tìm ra công thức nghiệm của các bất pt ấy thôi! Thanks trước nhiều) K

khunglong_samset_gaoninja

tuanduy_bmt said: I, Phương trình, bất phương trình chứa dấu giá trị tuyệt đối:mad: (Không biết dấu trị tuyệt đối ở đâu cả:confused:kí hiệu tạm là [ ] nhé! [f(x)] > g(x) [f(x)] < g(x) [f(x)] > [g(x)] II, Pt,bpt chứa dấu căn thức (post sau nhá- ai biết thì post và chỉ giải giùm tớ luôn! Không cần giải cụ thể chỉ cần hướng dẫn tớ cách nhận biết và tìm ra công thức nghiệm của các bất pt ấy thôi! Thanks trước nhiều) Bấm để xem đầy đủ nội dung ...
|f(x)|<g(x) \Leftrightarrow-g(x)<f(x)<g(x) |f(x)|>|g(x)| \Leftrightarrow[TEX]f(x)^2>g(x)^2[/TEX] \Leftrightarrow|f(x)|>g(x) Nếu g(x)\leq0 :BPT thỏa (a) Nếu g(x)>0 \Leftrightarrow[TEX]f(x)^2>g(x)^2[/TEX](b) Kết hợp (a) với (b) hiz viết thế này khó lắm cho bài cụ thể hay hơn. H

hg201td

tuanduy_bmt said: I, Phương trình, bất phương trình chứa dấu giá trị tuyệt đối:mad: (Không biết dấu trị tuyệt đối ở đâu cả:confused:kí hiệu tạm là [ ] nhé! [f(x)] > g(x) [f(x)] < g(x) [f(x)] > [g(x)] II, Pt,bpt chứa dấu căn thức (post sau nhá- ai biết thì post và chỉ giải giùm tớ luôn! Không cần giải cụ thể chỉ cần hướng dẫn tớ cách nhận biết và tìm ra công thức nghiệm của các bất pt ấy thôi! Thanks trước nhiều) Bấm để xem đầy đủ nội dung ...
Ta có: [TEX]\mid f(x)>g(x)[/TEX] [TEX]\Leftrightarrow[/TEX] [TEX]f(x)>g(x) or f(x)<g(x)[/TEX] [TEX]\mid f(x)> \mid g(x)\mid[/TEX] [TEX]\Leftrightarrow[/TEX] [TEX](f(x)+g(x))(f(x)-g(x))>0[/TEX] [TEX]\Rightarrow[/TEX] [TEX]f(x)>g(x) or f(x)<-g(x)[/TEX] [TEX]\mid f(x)<g(x)[/TEX] [TEX]\Leftrightarrow[/TEX] -g(x)<f(x)<g(x) II/GPT chứa căn thức GPT chứa căn thức bằng phương pháp biến đổi tương đương *[TEX]\sqrt {f(x)}=\sqrt {g(x)}= [/TEX] *[TEX]\sqrt{f(x)}=g(x)[/TEX][TEX]\Leftrightarrow[/TEX] [TEX] g(x)\geq 0; f(x)={g(x)^2}[/TEX] *[TEX]\sqrt {f(x)}+\sqrt {g(x)}=\sqrt {h(x)}\Leftrightarrow f(x)\geq 0;g(x) \geq 0; f(x)+g(x)+2\sqrt{f(x)g(x)}=h(x)[/TEX] (với điều kiện f(x);g(x);h(x) có nghĩa và 0 cần h(x)>0) Dùng ẩn phụ và chuyển PT chứa căn thức thành PT chứa ẩn phụTuỳ từng trường hợp của PT để đặt sao cho phù hợp Dùng ẩn phụ chuyển PT chứa căn thức thành 1 PT với 1 ẩn phụ nhưng hệ số vẫn chứa x Dùng phương pháp hàm số b1: chuyển Pt về dạng f(x)=k b2:Xét hàm số y=f(x) giả sử hàm số này đồng biến b3: +[TEX]x=x_0 [/TEX] [TEX]\Leftrightarrow[/TEX] [TEX]f(x)=f(x_0)[/TEX]do đó x=[TEX]x_0[/TEX] là nghiệm +[TEX]x>x_0[/TEX] [TEX]\Leftrightarrow[/TEX] [TEX]f(x)>f(x_0)[/TEX][TEX]\Rightarrow[/TEX] PT vô nghiệm ++[TEX]x<x_0[/TEX] [TEX]\Leftrightarrow[TEX][/TEX]f(x)<f(x_0)[/TEX][TEX]\Rightarrow[/TEX] PT vô nghiệm Vậy [TEX]x=x_0 [/TEX] là nghiệm duy nhất của hệ Phương pháp đánh giá:Tuỳ vào biến để có đánh giá tinh tế Đây chỉ là 1 trog số các phương pháp giải........ 1 số bài tập vận dụng nhé: 1.[TEX]x^3+1=2\sqrt[3]{2x-1}[/TEX] 2.[TEX]\sqrt {\frac{4x+9}{28}}[/TEX]=[TEX]7x^2+7x[/TEX] 3.[TEX]2\sqrt[n]{(1+x)^2}+3\sqrt[n]{1-x^2}+\sqrt[n]{(1-x)^2}=0[/TEX] Last edited by a moderator: 6 Tháng hai 2009 T

tester

Các dạng về pt, bpt nhiều và cách giải cũng co nhiều pp. Bạn nên làm khá nhiều bài tập để luyện kĩ năng nhé Last edited by a moderator: 6 Tháng hai 2009 F

forever_lucky07

Nói chung ta có tq như sau: [TEX]\left| {f(x)} \right| > g(x) \Leftrightarrow \left\{ \begin{array}{l}f(x) > g(x) \\ f(x) > 0 \\ \end{array} \right. \vee \left\{ \begin{array}{l}- f(x) > g(x) \\ f(x) \le 0 \\ \end{array} \right.\[/TEX] [TEX]\left| {f(x)} \right| < g(x) \Leftrightarrow - g(x) < f(x) < g(x)\[/TEX] [TEX]\left| {f(x)} \right| < \left| {g(x)} \right| \Leftrightarrow f^2 (x) < g^2 (x)\[/TEX] Sau đây là một số ví dụ: [TEX]\begin{array}{l}1,\left| {x + 4} \right| > x^2 - 3x \\ 2,\left| {x^2 + x - 2} \right| < x + 1 \\ 3,\left| {x + 3} \right| < \left| {2x - 5} \right| \\ \end{array}\[/TEX] You must log in or register to reply here. Chia sẻ: Facebook Reddit Pinterest Tumblr WhatsApp Email Chia sẻ Link
  • Diễn đàn
  • TOÁN
  • TRUNG HỌC PHỔ THÔNG
  • Toán lớp 10
  • Bất đẳng thức. Bất phương trình
Top Bottom
  • Vui lòng cài đặt tỷ lệ % hiển thị từ 85-90% ở trình duyệt trên máy tính để sử dụng diễn đàn được tốt hơn.

Từ khóa » F(x) Nhỏ Hơn Hoặc Bằng G(x)