Toán 12 Bài 1: Số Phức - HOC247
Có thể bạn quan tâm
Trong chương trình phổ thông các lớp, các em đã quen với khái niệm bình phương của một số luôn luôn nhận được kết quả là một số không âm, hay số âm không có căn bậc hai. Từ thực tiễn tính toán và nhu cầu của các môn khoa học người ta đã cho ra đời con số i có bình phương bằng -1 là nền tảng của sự ra đời số phức. Nội dung bài học sẽ giới thiệu đến các em các khái niệm liên quan đến số phức và các tính chất của nó.
ATNETWORK YOMEDIA1. Video bài giảng
2. Tóm tắt lý thuyết
2.1. Các khái niệm về số phức
2.2. Một số tính chất cần lưu ý của số phức
3. Bài tập minh hoạ
4. Luyện tập Bài 1 Chương 4 Toán 12
4.1. Trắc nghiệm
4.2. Bài tập SGK
5. Hỏi đáp về bài 1 Chương 4 Toán 12
Tóm tắt lý thuyết
2.1. Các khái niệm về số phức
- Số phức \(z = a + bi\) có phần thực là \(a\), phần ảo là \(b\) (\(a,b\in\mathbb{R}\) và \(i^2=-1\)).
- Số phức bằng nhau \(a + bi = c + di \Leftrightarrow\) \(a=c\) và \(b=d.\)
- Số phức \(z = a + bi\) được biểu diễn bới điểm \(M(a,b)\) trên mặt phẳng toạ độ.
.png)
- Độ dài của vectơ \(\overrightarrow {OM} \) là môđun của số phức \(z\), kí hiệu là \(\left| z \right| = \overrightarrow {OM} = \sqrt {{a^2} + {b^2}} .\)
.png)
- Số phức liên hợp của số phức \(z = a + bi\) là \(a-bi\) kí hiệu là \(\overline z = a - bi.\)
.png)
2.2. Một số tính chất cần lưu ý của số phức
- Mỗi số thực là số phức có phần ảo bằng 0. Ta có \(\mathbb{R}\subset \mathbb{C}.\)
- Số phức \(bi\)(\(b\in\mathbb{R}\)) được gọi là số thuần ảo (phần thực bằng 0).
- Số \(i\) được gọi là đơn vị ảo.
- Số phức viết dưới dạng \(z = a + bi(a,b\in\mathbb{R})\) gọi là dạng đại số của số phức.
- Ta có:
+ \(\left| {\overline z } \right| = \left| z \right|\).
+ \(z = \overline z \Leftrightarrow z\) là số thực.
+ \(z = - \overline z \Leftrightarrow z\) là số ảo.
Bài tập minh họa
Ví dụ 1:
Tìm số thực x, y thỏa mãn:
a) \(5x + y + 5xi = 2y - 1 + (x - y)i.\)
b) \(\left( { - x + 2y} \right)i + \left( {2x + 3y + 1} \right) = \left( {3x - 2y + 2} \right) + \left( {4x - y - 3} \right)i\)
Lời giải:
a)
\(\begin{array}{l} 5x + y + 5xi = 2y - 1 + (x - y)i\\ \Leftrightarrow (3x + y) + 5xi = (2y - 1) + (x - y)i\\ \Leftrightarrow \left\{ \begin{array}{l} 3x + y = 2y - 1\\ 5x = x - y \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - \frac{1}{7}.\\ y = \frac{4}{7}. \end{array} \right. \end{array}\)
b)
Ta có: \(\left( { - x + 2y} \right)i + \left( {2x + 3y + 1} \right) = \left( {3x - 2y + 2} \right) + \left( {4x - y - 3} \right)i\) khi:
\(\left\{ {\begin{array}{*{20}{c}} { - x + 2y = 4x - y - 3}\\ {2x + 3y + 1 = 3x - 2y + 2} \end{array}} \right.\)\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {5x - 3y = 3}\\ {x - 5y = - 1} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {x = \frac{9}{{11}}}\\ {y = \frac{4}{{11}}} \end{array}} \right.\)
Ví dụ 2:
Tìm số phức z biết:
a) \(\left| z \right| = 5\) và \(z = \overline z\).
b) \(\left| z \right| = 4\) và \(z = -\overline z.\)
c) \(\left| z \right| = 6\) và phần thực của số phức z bằng ba lần phần ảo của z.
Lời giải:
Gọi số phức z cần tìm là \(z=x+yi\) suy ra: \(\overline z = x - yi\)
a) Ta có: \(z = \overline z\) nên \(x + yi = x - yi \Leftrightarrow 2yi = 0 \Leftrightarrow y = 0.\)
Mà \(\left| z \right| = \sqrt {{x^2} + {y^2}} = \sqrt {{x^2}} = 5 \Leftrightarrow x = \pm 5.\)
Vậy số phức cần tìm là z=5; z=-5.
b) Ta có: \(z = -\overline z\) nên \(x + yi = -x + yi \Leftrightarrow 2x = 0 \Leftrightarrow x= 0.\)
Mà \(\left| z \right| = \sqrt {{x^2} + {y^2}} = \sqrt {{y^2}} = 4 \Leftrightarrow y = \pm 4.\)
Vậy số phức z cần tìm là z=4i; z=-4i.
c) Phần thực của số phức z là x và phần ảo là y nên x=3y. Do đó ta có:
\(\begin{array}{l} \left\{ \begin{array}{l} x = 3y\\ \sqrt {{x^2} + {y^2}} = 6 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 3y\\ {\left( {3y} \right)^2} + {y^2} = 36 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 3y\\ {y^2} = \frac{{18}}{5} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} y = \frac{{3\sqrt {10} }}{5};x = \frac{{9\sqrt {10} }}{5}\\ y = - \frac{{3\sqrt {10} }}{5};x = - \frac{{9\sqrt {10} }}{5} \end{array} \right. \end{array}\)
vậy ta có \(z = \frac{{9\sqrt {10} }}{5} + \frac{{3\sqrt {10} }}{5}i;\,\,z = - \frac{{9\sqrt {10} }}{5} - \frac{{3\sqrt {10} }}{5}i.\)
4. Luyện tập Bài 1 Chương 4 Toán 12
Trong chương trình phổ thông các lớp, các em đã quen với khái niệm bình phương của một số luôn luôn nhận được kết quả là một số không âm, hay số âm không có căn bậc hai. Từ thực tiễn tính toán và nhu cầu của các môn khoa học người ta đã cho ra đời con số i có bình phương bằng -1 là nền tảng của sự ra đời số phức. Nội dung bài học sẽ giới thiệu đến các em các khái niệm liên quan đến số phức và các tính chất của nó.
4.1 Trắc nghiệm
Để củng cố bài học xin mời các em cùng làm Bài kiểm tra Trắc nghiệm Toán 12 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Cho số phức \(z = ax + bi\,\left( {a,b \in R} \right)\), mệnh đề nào sau đây là sai?
- A. Đối với số phức z, a là phần thực.
- B. Điểm \(M\left( {a,b} \right)\) trong một hệ tọa độ vuông góc của mặt phẳng phức được gọi là điểm biểu diễn số phức \(z = a + bi\).
- C. Đối với số phức z, bi là phần ảo.
- D. Số i được gọi là đơn vị ảo.
-
Câu 2:
Tìm điểm biểu diễn của số phức \(z = 5 - 3i\) trên mặt phẳng phức.
- A. \(M\left( {5; - 3} \right)\)
- B. \(N\left( { - 3;5} \right)\)
- C. \(P\left( { - 5;3} \right)\)
- D. \(Q\left( {3; - 5} \right)\)
-
Câu 3:
Mệnh đề nào sau đây là mệnh đề sai?
- A. Số phức \(z=a+bi\) được biểu diễn bằng điểm M(a;b) trong mặt phẳng phức Oxy
- B. Số phức \(z=a+bi\) có môđun là \(\sqrt {{a^2} + {b^2}}\)
- C. Số phức \(z=a+bi\) thì a=0 và b=0
- D. Số phức \(z=a+bi\) có số phức liên hợp là \(\overline z = - a - bi\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
4.2 Bài tập SGK
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 12 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.
Bài tập 1 trang 133 SGK Giải tích 12
Bài tập 2 trang 133 SGK Giải tích 12
Bài tập 3 trang 134 SGK Giải tích 12
Bài tập 4 trang 134 SGK Giải tích 12
Bài tập 5 trang 134 SGK Giải tích 12
Bài tập 6 trang 134 SGK Giải tích 12
Bài tập 4.1 trang 198 SBT Toán 12
Bài tập 4.2 trang 198 SBT Toán 12
Bài tập 4.3 trang 199 SBT Toán 12
Bài tập 4.4 trang 199 SBT Toán 12
Bài tập 4.5 trang 199 SBT Toán 12
Bài tập 4.6 trang 199 SBT Toán 12
Bài tập 4.7 trang 200 SBT Toán 12
Bài tập 1 trang 189 SGK Toán 12 NC
Bài tập 2 trang 189 SGK Toán 12 NC
Bài tập 3 trang 189 SGK Toán 12 NC
Bài tập 4 trang 189 SGK Toán 12 NC
Bài tập 5 trang 190 SGK Toán 12 NC
Bài tập 6 trang 190 SGK Toán 12 NC
Bài tập 7 trang 190 SGK Toán 12 NC
Bài tập 8 trang 190 SGK Toán 12 NC
Bài tập 9 trang 190 SGK Toán 12 NC
Bài tập 10 trang 190 SGK Toán 12 NC
Bài tập 11 trang 191 SGK Toán 12 NC
Bài tập 12 trang 191 SGK Toán 12 NC
Bài tập 13 trang 191 SGK Toán 12 NC
Bài tập 14 trang 191 SGK Toán 12 NC
Bài tập 15 trang 191 SGK Toán 12 NC
Bài tập 16 trang 191 SGK Toán 12 NC
5. Hỏi đáp về Bài 1 Chương 4 Toán 12
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 12 HỌC247
NONE Bài học cùng chương
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 9 Lớp 12 Deserts
Tiếng Anh 12 mới Unit 4
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Ôn tập Hóa học 12 Chương 4
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 1 - Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG môn Toán
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Ai đã đặt tên cho dòng sông
Tây Tiến
Quá trình văn học và phong cách văn học
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Bài Số Phức 12
-
Số Phức - Toán 12
-
Giải Toán 12 Bài 1 : Số Phức
-
Tổng Hợp Lý Thuyết Toán 12 Chương Số Phức Chọn Lọc - Kiến Guru
-
Soạn Giải Tích 12 Bài 1: Số Phức | Học Cùng
-
Giải Toán Lớp 12 Bài 1, 2, 3, 4, 5, 6 Trang 133, 134 SGK Giải Tích
-
Sách Giải Bài Tập Toán Lớp 12 Bài 1 : Số Phức
-
Giải Bài Tập Toán 12 Số Phức Chi Tiết Nhất
-
Giải Bài Tập Toán 12 Chương 4 Bài 1: Số Phức
-
Giải Toán 12 Bài 1. Số Phức - Giải Bài Tập
-
SỐ PHỨC (PHẦN 1) - TOÁN 12 - THẦY Nguyễn Quốc Chí - YouTube
-
Đại Số Lớp 12 Bài 1 Số Phức Ngắn Gọn Và Chi Tiết Nhất - Soạn Bài Tập
-
Giải Bài 1: Số Phức | Giải Tích 12 Trang 130 - 134 - Tech12h
-
Bài 1 Trang 133 Sgk Giải Tích 12: Tìm Phần Thực Và Phần ảo Của Số ...
-
Giáo án Giải Tích 12 – Chương IV: Số Phức - Trường THPT Kinh Môn II