[toán 12]Tích Phân Với Hàm Hữu Tỷ | Cộng đồng Học Sinh Việt Nam
Có thể bạn quan tâm
- Diễn đàn Bài viết mới Tìm kiếm trên diễn đàn
- Đăng bài nhanh
- Có gì mới? Bài viết mới New media New media comments Status mới Hoạt động mới
- Thư viện ảnh New media New comments Search media
- Story
- Thành viên Đang truy cập Đăng trạng thái mới Tìm kiếm status cá nhân
Tìm kiếm
Everywhere Đề tài thảo luận This forum This thread Chỉ tìm trong tiêu đề Search Tìm nâng cao… Everywhere Đề tài thảo luận This forum This thread Chỉ tìm trong tiêu đề By: Search Advanced…- Bài viết mới
- Tìm kiếm trên diễn đàn
- Thread starter ductri_vn
- Ngày gửi 13 Tháng một 2013
- Replies 1
- Views 39,746
- Bạn có 1 Tin nhắn và 1 Thông báo mới. [Xem hướng dẫn] để sử dụng diễn đàn tốt hơn trên điện thoại
- Diễn đàn
- TOÁN
- TRUNG HỌC PHỔ THÔNG
- Toán lớp 12
- Nguyên hàm và tích phân
ductri_vn
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn. Đối tượng: Ôn thi đại học Mục đích: Topic này lập ra với mong muốn sẽ giúp các bạn giải được tất cả các tích phân hàm hữu tỷ Nội dung: Đề bài: Tính tích phân dạng [tex]\frac{P(x)}{Q(x)}[/tex] Trong đó P(x) là đa thức theo x, bậc n Q(x) là đa thức theo x, bậc m TH1: n>=m Chia đa thức P(x) cho Q(x)được thương và số dư R(x) có bậc nhỏ hơn m, giải tích phân [tex]\frac{R(x)}{Q(x)}[/tex] theo TH2. TH2: n<m B1: Phân tích Q(x) về dạng: [tex]Q(x) = (a_1x+b_1)^A(a_2x+b_2)^B...(c_1x^2+d_1x+e_1)^C(c_2x^2+d_2x+e_2)^D...[/tex] Tất nhiên các đa thức [tex]c_1x^2+d_1x+e_1,c_2x^2+d_2x+e_2[/tex] không có nghiệm B2: Đồng nhất thức [tex]\frac{P(x)}{Q(x)}[/tex] về các số hạng hữu tỷ (dạng phân số) với các mẫu số lấy từ các thừa sô phân tích được của Q(x) ở trên, theo quy tắc: Bậc của tử luôn nhỏ hơn bậc của mẫu. Số mũ của mẫu số bằng bao nhiêu thì khi phân tích ta có bấy nhiêu phân số, theo thứ tự bậc tử số tăng dần, từ 0 đến bậc của mẫu - 1. Bài tập ví dụ: Vd1. [tex]\int\limits_{a}^{b} \frac{2x-3}{x^3-5x^2+6x} [/tex] B1: [tex]Q(x) = x^3-5x^2+6x[/tex]=[tex]x(x-2)(x-3)[/tex] B2: Với mỗi thừa số của mẫu sẽ tương ứng với 1 phân số được tách ra, mà các thừa số này đều là bậc 1 nên bậc của mỗi tử số là bậc 0, tức là hằng số Ta có [tex]\frac{2x-3}{x^3-5x^2+6x} = \frac{a}{x} +\frac{b}{x-2} + \frac{c}{x-3}[/tex] Tới đây quy đồng lên và đồng nhất thức ta được a=-0.5 b=-0.5 và c=1 Tới đây việc tính tích phân chỉ cần dùng công thức. Lưu ý: Ngoài việc phải đồng nhất thức bằng cách quy đồng, cho vào các giá trị đặc biệt thì các bạn có thể làm nhanh như sau: Để tìm a, cho x= 0 thay vào biểu thức [tex]\frac{2x-3}{(x-2)(x-3)}[/tex] Để tìm b, cho x=2 thay vào biểu thức [tex] \frac{2x-3}{x(x-3)}[/tex] Để tìm c, cho x=3 thay vào biểu thức [tex] \frac{2x-3}{x(x-2)}[/tex] Vd2. [tex]\int\limits_{a}^{b}\frac{x^3+x-1}{x^2+5x-4}dx[/tex] Ta có [tex]\frac{x^3+x-1}{x^2+5x+4} = x - 5 + \frac{22x+19}{x^2+5x+4} = x - 5 + \frac{22x+19}{(x+1)(x+4)}[/tex] Việc tách biểu thức hữu tỷ sau ra giống như ví dụ 1 [tex]\frac{22x+19}{(x+1)(x+4)} = \frac{a}{x+1} + \frac{b}{x+4}[/tex] Tới đây các bạn tự giải tiếp Vd3. [tex]\int\limits_{a}^{b}\frac{2x-3}{(x-1)^2(x^2+2x+5}dx[/tex] Mẫu số gồm 2 thừa số [tex](x-1)[/tex] và [tex](x^2+2x+5)[/tex] nên ta sẽ tách ra thành 2 phân số với 2 mẫu số như trên. Với [tex](x-1)[/tex], có bậc là 1, bậc tử nhỏ hơn nên tử phải là hằng số; nhưng vì có số mũ là 2 nên việc tách ra lại gồm 2 phân số, cụ thể là [tex]\frac{a}{x-1}[/tex] + [tex]\frac{b}{(x-1)^2}[/tex] Với [tex](x^2+2x+5)[/tex] có bậc là 2 nên bậc tử là 1, ứng với phân số [tex]\frac{cx+d}{x^2+2x+5}[/tex] Vậy [tex]\frac{2x-3}{(x-1)^2(x^2+2x+5}= \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{cx+d}{x^2+2x+5}[/tex] Đồng nhất thức, theo cách trên, riêng với mẫu số vô nghiệm thì có thể cho nghiệm là số phức rồi đồng nhất theo số thực, ảo. Còn nếu không cứ đồng nhất thức theo cách thường. Việc xử lý tích phân[tex]\frac{cx+d}{x^2+2x+5}[/tex] chắc nhiều bạn biết rồi, nhưng mình xin nói thêm cho chắc. Tách tích phân ra làm 2 [tex]\frac{P(x)}{x^2+2x+5} + \frac{Q(x)}{x^2+2x+5}[/tex] Trong đó P(x) là đạo hàm của mẫu, còn Q(x) là số dư, trong TH này là hàm hằng số. Tới đây chắc ai cũng làm được (Tổng hợp) Last edited by a moderator: 14 Tháng một 2013 Nngoc1thu2
tìm nguyên hàm \int_{}^{} $\frac{3x^2-2x}{x^3-2x+5}dx$ .............................................................................................. Last edited by a moderator: 20 Tháng một 2013 You must log in or register to reply here. Chia sẻ: Facebook Reddit Pinterest Tumblr WhatsApp Email Chia sẻ Link- Diễn đàn
- TOÁN
- TRUNG HỌC PHỔ THÔNG
- Toán lớp 12
- Nguyên hàm và tích phân
- Vui lòng cài đặt tỷ lệ % hiển thị từ 85-90% ở trình duyệt trên máy tính để sử dụng diễn đàn được tốt hơn.
Từ khóa » Nguyên Hàm Tử Nhỏ Hơn Mẫu
-
Tích Phân Hữu Tỷ (integration By Partial Fractions)
-
Hướng Dẫn Tính Nguyên Hàm, Tích Phân
-
Phương Pháp Tính Tích Phân Hàm Số Phân Thức Hữu Tỉ | Tăng Giáp
-
Kỹ Thuật Xử Lý Tích Phân Bậc Tử Nhỏ Hơn Bậc Mẫu P2 - YouTube
-
[PDF] Hướng Dẫn Tính Nguyên Hàm , Tích Phân
-
Hướng Dẫn Tính Nguyên Hàm Bậc Tử Nhỏ Hơn Bậc Mẫu, Tài Liệu
-
Nguyên Hàm Bậc Tử Nhỏ Hơn Bậc Mẫu, Học Tại Nhà
-
Nguyên Hàm Bậc Tử Nhỏ Hơn Bậc Mẫu - TuhocOnline
-
Tính Tích Phân Của Phân Thức Có Bậc Của Tử Số Lớn Hơn Bậc Mẫu Số ...
-
Cách Tính Tích Phân Của Hàm Phân Thức Hữu Tỉ - Phần 1 - Mathvn
-
4-NGUYÊN HÀM ,TÍCH PHÂN HÀM HỮU TỶ - Tài Liệu Text - 123doc
-
Đặng Thanh Huế - Facebook