Toán 12 - Tìm $m$ để Hàm Số $y=mx^4+(m+1)x^2 ... - HOCMAI Forum
Có thể bạn quan tâm
- Diễn đàn Bài viết mới Tìm kiếm trên diễn đàn
- Đăng bài nhanh
- Có gì mới? Bài viết mới New media New media comments Status mới Hoạt động mới
- Thư viện ảnh New media New comments Search media
- Story
- Thành viên Đang truy cập Đăng trạng thái mới Tìm kiếm status cá nhân
Tìm kiếm
Everywhere Đề tài thảo luận This forum This thread Chỉ tìm trong tiêu đề Search Tìm nâng cao… Everywhere Đề tài thảo luận This forum This thread Chỉ tìm trong tiêu đề By: Search Advanced…- Bài viết mới
- Tìm kiếm trên diễn đàn
- Thread starter DimDim@
- Ngày gửi 30 Tháng mười một 2021
- Replies 3
- Views 3,440
- Bạn có 1 Tin nhắn và 1 Thông báo mới. [Xem hướng dẫn] để sử dụng diễn đàn tốt hơn trên điện thoại
- Diễn đàn
- TOÁN
- TRUNG HỌC PHỔ THÔNG
- Toán lớp 12
- Ứng dụng đạo hàm
DimDim@
Học sinh chăm học
Thành viên 30 Tháng chín 2021 608 676 121 Cần Thơ
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn. 1. Tìm tất cả các giá trị của tham số thực $m$ để hàm số $y=mx^4+(m+1)x^2+1$ có một điểm cực tiểu A. $m>0$ B. $m\ge 0$ C. $-1<m<0$ D. $m>-1$ 2. Hàm số $y=(x^2-4)^2(1-2x)^3$ có bao nhiêu điểm cực trị A. $3$ B. $4$ C. $5$ D. $6$ Mọi người giải giúp mình với, xin cảm ơn! Attachments
-
IMG_20211130_141402.jpg 16.9 KB · Đọc: 31
Alice_www
Cựu Mod Toán
Thành viên 8 Tháng mười một 2021 1,806 4 2,216 316 Bà Rịa - Vũng TàuDimDim@ said: View attachment 194804 Mọi người giải giúp mình với, xin cảm ơn! Bấm để xem đầy đủ nội dung ...1.Tìm tất cả các giá trị của tham số thực m để hàm số $y=mx^4+(m+1)x^2+1$ có một điểm cực tiểu $y'=4mx^3+2(m+1)x$ TH1: $m=0$ thì y trở thành $y=x^2+1$ $y'=2x=0\Rightarrow x=0$ Vậy y có 1 cực tiểu thỏa TH2: $m\ne 0$ $y'=0\Leftrightarrow 2mx^3+(m+1)x=0\Rightarrow \left[\begin{matrix}x=0\\2mx^2+m+1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix}x=0\\x^2=-\dfrac{1+m}{2m}\quad (1)\end{matrix}\right.$ Với $m>0$ thì (1) vô nghiệm. Vậy y có 1 điểm cực tiểu (thỏa) Với $-1<x<0$ thì (1) có 2 nghiệm. Vậy y có 2 cực đại và 1 cực tiểu (thỏa) Với $m=-1$ thì (1) có nghiệm kép là 0. Vậy y có 1 cực đại (loại) Với $x<-1$ thì (1) vô nghiệm. Vậy y có 1 cực đại (loại) Vậy $m>-1$ thỏa ycbt 2. Hàm số $y=(x^2-4)^2(1-2x)^3$ có bao nhiêu điểm cực trị Ta có $y'=2.2x(x^2-4)(1-2x)^3+(x^2-4)^23.(-2)(1-2x)^2$ $=(x^2-4)(1-2x)^2[4x(1-2x)-6(x^2-4)]=(x^2-4)(1-2x)^2(-14x^2+4x+24)$ $y'=0$ có 4 nghiệm đơn. Vậy y có 4 cực trị Có gì khúc mắc b hỏi lại nhé <3
DimDim@
Học sinh chăm học
Thành viên 30 Tháng chín 2021 608 676 121 Cần ThơCáp Ngọc Bảo Phương said: 1.Tìm tất cả các giá trị của tham số thực m để hàm số $y=mx^4+(m+1)x^2+1$ có một điểm cực tiểu $y'=4mx^3+2(m+1)x$ TH1: $m=0$ thì y trở thành $y=x^2+1$ $y'=2x=0\Rightarrow x=0$ Vậy y có 1 cực tiểu thỏa TH2: $m\ne 0$ $y'=0\Leftrightarrow 2mx^3+(m+1)x=0\Rightarrow \left[\begin{matrix}x=0\\2mx^2+m+1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix}x=0\\x^2=-\dfrac{1+m}{2m}\quad (1)\end{matrix}\right.$ Với $m>0$ thì (1) vô nghiệm. Vậy y có 1 điểm cực tiểu (thỏa) Với $-1<x<0$ thì (1) có 2 nghiệm. Vậy y có 2 cực đại và 1 cực tiểu (thỏa) Với $m=-1$ thì (1) có nghiệm kép là 0. Vậy y có 1 cực đại (loại) Với $x<-1$ thì (1) vô nghiệm. Vậy y có 1 cực đại (loại) Vậy $m>-1$ thỏa ycbt 2. Hàm số $y=(x^2-4)^2(1-2x)^3$ có bao nhiêu điểm cực trị Ta có $y'=2.2x(x^2-4)(1-2x)^3+(x^2-4)^23.(-2)(1-2x)^2$ $=(x^2-4)(1-2x)^2[4x(1-2x)-6(x^2-4)]=(x^2-4)(1-2x)^2(-14x^2+4x+24)$ $y'=0$ có 4 nghiệm đơn. Vậy y có 4 cực trị Có gì khúc mắc b hỏi lại nhé <3 Bấm để xem đầy đủ nội dung ...Câu 1, sao $m>0$ thì (1) vô nghiệm và kết luận được y có 1 điểm cực tiểu vậy ạ
Timeless time
Cựu Phụ trách nhóm Toán
Thành viên 19 Tháng tám 2018 2,749 6,038 596 24 Thái Bình Đại học Y Dược Thái BìnhDimDim@ said: Câu 1, sao $m>0$ thì (1) vô nghiệm và kết luận được y có 1 điểm cực tiểu vậy ạ Bấm để xem đầy đủ nội dung ...$m>0$ thì $x^2=-\dfrac {1+m}{2m} <0 \Rightarrow $ Phương trình vô nghiệm $\Rightarrow y'=0$ có một nghiệm $x=0$ nên hàm số có một cực tiểu Nếu có gì không hiểu thì hỏi lại nhé. Chúc em học tốt
- Diễn đàn
- TOÁN
- TRUNG HỌC PHỔ THÔNG
- Toán lớp 12
- Ứng dụng đạo hàm
- Vui lòng cài đặt tỷ lệ % hiển thị từ 85-90% ở trình duyệt trên máy tính để sử dụng diễn đàn được tốt hơn.
Từ khóa » Hàm Số Y=mx^4+(m-1)x^2+1-2m
-
Với Giá Trị Nào Của M, Hàm Số Y = - 1)x^2 + 1 - Khóa Học
-
Hàm Số \(y = Mx⁴ + (m -1) X² +1- 2m\) Có Một điểm Cực Trị Khi
-
Với Giá Trị Nào Của M, Hàm Số Y = -mx4 + 2(m - 1)x2 + 1
-
Cho Hàm Số Y=mx^4+(2m+1)x^2+1. Tìm Tất Cả Các Giá Trị Thực Của ...
-
Cho Hàm Số Y = Mx^4 – (m – 1)x^2 – 2. Tìm Tất Cả Các Giá Trị Thực Của ...
-
Cho Hàm Số Y = Mx^4 - (2m + 1)x^2 + 1. Tìm Tất Cả Các Giá Trị Của ...
-
Tìm M để Hs Y=mx^4-(m+1)x^2+m+1 Có Các Cực Trị Nằm Trên Các Trục ...
-
Hàm Số Y = Mx4 + (m – 1)x2 + 2m – 3 Có - Tự Học 365
-
Điều Kiện Cần Và đủ Của M để Hàm Số Y=mx4+m+1x2+1 Có 3 điểm ...
-
Điều Kiện Cần Và đủ Của M để đồ Thị Hàm Số Y=mx^4 + (m+1)x^2 +1 ...
-
Cho Hàm Số Y = Mx4 + (2m + 1)x2 + 1. Tìm Tất Cả Các Giá Trị Của M để ...