Toán 9 - Ôn Công Thức Tính Diện Tích
Có thể bạn quan tâm
- Trang Chủ
- Đăng ký
- Đăng nhập
- Upload
- Liên hệ
ÔN CÔNG THỨC TÍNH DIỆN TÍCH
1. Diện tích tam giác:
a) Tam giác vuông:
b) Tam giác thường:
1>
2> Công thức hê rông:
Trong đó : ( Nửa chu vi của tam giác)
2. Diện tích tứ giác:
a) Diện tích hình chữ nhật : S = a.b ( a; b là hai kích thức của hình chữ nhật)
b) Diện tích hình vuông : S = a2.
b) Diện tích hình thang :
10 trang minhquan88 10339 1 Download Bạn đang xem tài liệu "Toán 9 - Ôn công thức tính diện tích", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trênÔN CÔNG THỨC TÍNH DIỆN TÍCH 1. Diện tích tam giác: a) Tam giác vuông: b) Tam giác thường: 1> 2> Công thức hê rông: Trong đó : ( Nửa chu vi của tam giác) 2. Diện tích tứ giác: a) Diện tích hình chữ nhật : S = a.b ( a; b là hai kích thức của hình chữ nhật) b) Diện tích hình vuông : S = a2. b) Diện tích hình thang : c) Diện tích hình bình hành: d) Diện tích hình thoi: e) Diện tích miền đa giác: * Tính chất : Đường trung tuyến của tam giác chia tam giác thành hai tam giác có diện tích bằng nhau. BÀI TOÁN VỀ DIỆN TÍCH : Bài 1: Một hình chữ nhật ABCD, gọi E là trung điểm của CD; AC cắt lần lượt BD và BE tại I và L ; AE cắt BD tại K . Tính diện tích tứ giác EKIL biết diện tích ABED lớn hơn diện tích BCE là 60m2 F Bài giải: Ta có : Gọi F là trung điểm của AB.; Hạ Ta dễ nhận thấy: . = = ( Tính chất đường trung tuyến) = 5 cm2 Vậy . Bài 2: Cho hình bình hành ABCD có hai đường chéo cắt nhau tại E . Trên cạnh AB lấy điểm K sao cho AK = 2 KB và trên cạnh AD lấy điểm L sao cho AD = 3 AL Tính diện tích đa giác BKELDC biết rằng dt ACD + dt BCD = 120 m2 Bài giải: ( Tính chất đường trung tuyến) Qua E, hạ . Tương tự: Vậy = = 30 m2 BÀI 3: Cho hình vuông ABCD có độ dài cạnh là a=. Gọi I là trung điểm của AB. Điểm H thuộc DI sao cho góc AHI = 90o. a)Tính diện tích tam giác CHD. Từ đó suy ra diện tích tứ giác BCHI. b)Cho I tùy ý thuộc AB, M tùy ý thuộc BC sao cho góc MDI = 45o. Tính giá trị lớn nhất của diện tích tam giác DMI. Bài giải: a) Ta cã : . DI = DH = DI – IH = = CK ( Vì ) = 6.845613953 Suy ra : = b) Vậy đạt giá trị lớn nhất khi IH. DM = DI.IM hay vuông cân tại I. Max = . Câu 4: (3,0 điểm) a) Cho tam giác ABC, trong đoạn BC lấy điểm X. Từ X kẻ đường thẳng song song AC cắt AB tại M; kẻ đường thẳng song song AB cắt AC tại N biết , . Tính diện tích tứ giác AMXN ? b) Cho tam giác ABC vuông tại C có BC=3AC, cạnh BC bị chia bởi các điểm D và E ra thành 3 phần bằng nhau. Tính tổng a) b) ABC+AEC =450 8)Cho ngũ giác đều ABCDE có độ dài cạnh bằng 1.Gọi I là giao điểm của 2 đường chéo AD và BE. Tính : (chính xác đến 4 chữ số thập phân) a) Độ dài đường chéo AD AD » b) Diện tích của ngũ giác ABCDE : SABCDE » c) Độ dài đoạn IB : IB » d) Độ dài đoạn IC : IC » Bài 6: (5 điểm).Cho tam giác vu ông với các cạnh bên có độ dài là và . hãy tính tổng các binh phương của các trung tuyến. Kết quả ma2 + mb2 +mc2 » 6,3778 Bµi 10 : Cho tam giác ABC đều cã cạnh bằng 1. Trªn cạnh AC lấy c¸c điểm D, E sao cho Ð ABD = Ð CBE = 200. Gọi M là trung điểm của BE và N là điểm trªn cạnh BC sao BN = BM. TÝnh tổng diện tích hai tam giác BCE và tam giác BEN. Kẻ BI ^ AC Þ I là trung điểm AC. Ta có: Ð ABD = Ð CBE = 200 Þ Ð DBE = 200 (1) D ADB = D CEB (g–c–g) Þ BD = BE Þ D BDE cân tại B Þ I là trung điểm DE. mà BM = BN và Ð MBN = 200 Þ D BMN và D BDE đồng dạng. Þ Þ SBNE = 2SBMN = = SBIE Vậy SBCE + SBNE = SBCE + SBIE = SBIC = . .Bài tập. Bài 7. Cho hình bình hành ABCD có góc ở đỉnh A là góc tù. Kẻ hai đường cao AH và AK (AHBC; AK DC). Biết và độ dài hai cạnh của hình bình hành AB = 29,1945 cm; AD=198,2001cm. Tính AH và AK Tính tỉ số diện tích của hình bình hành ABCD và diện tích của tam giác HAK. Tính diện tích phần còn lại S của hình bình hành khi khoét đi tam giác AHK. Giải Do b) c) Bài 8. Cho vuông tại A. Biết BC = 8,916 cm và AD là phân giác trong của góc A. Biết BD = 3,178 cm. Tính AB, AC. Giải: Ta có: DC = BC – BD = 8,916 – 3,178 Theo tính chất đường phân giác trong tam giác, ta có: Bài 2: Tam giác ABC có cạnh AB= 7dm, các góc A= 48o23’18” và C = 54o41’39”. Tính gần đúng cạnh Ac và diện tích tam giác ABC. Kết quả AC ≈ 8,3550 dm S ≈ 21,8643 dm2 Bài 1: Cho có chu vi bằng 58m. Biết ; . Tìm độ dài ba cạnh của . ( Tính chính xác đến chữ số thập phân thứ năm ) Giải: Ta có : Áp dụng định lí hàm sin. Ta có : * a = * b = * c = Bài 2: Cho Ba đường cao AH; BK và CI. Tính tỉ số diện tích và ? Giải : Ta có : AI = CosA.AB; BK = CosB.BC; CH = CosC. AC + = CosA2 + = CosB2 + = CosC2 Nên = 1 – (CosA2+ CosB2 + CosC2 ) Bài 3: Cho hình vuông có cạnh bằng 1. Hình vuông thứ 1 các đỉnh là trung điểm của hình vuông ban đầu. Hình vuông thứ 2 có các đỉnh là trung điểm cạnh hình vuông thứ 1. Tìm độ dài cạnh hình vuông thứ 100. ( Lấy giá trị hiển thị trên máy tính) Giải: Cách 1: * Vì hình vuông thứ nhất có diện tích bằng S * Hình vuông thứ hai có diện tích bằng * Hình vuông thứ ba có diện tích bằng * Hình vuông thứ 100 có diện tích bằng nên độ dài cạnh hình vuông thứ 100 bằng Cách 2: Vì cạnh hình vuông ban đầu bằng 1 nên cạnh hình vuông thứ nhất là + Cạnh hình vuông thứ hai: + Cạnh hình vuông thứ ba: + Cạnh hình vuông thứ tư : . Vậy cạnh hình vuông thứ 100 là Bài 4: Cho đều cạnh a . MNPQ là hình chữ nhật nội tiếp trong với M; N thuộc BC, Q, P tương ứng thuộc AB; AC. a) Xác định điều kiện để MNPQ có diện tích lớn nhất? b) Tính giá trị lớn nhất khi 1) a = 2) a = 18, 17394273 Giải : a) Ta có : SMNPQ = MQ. PQ = sinB. BQ. 2.cosQ. AQ = BQ.AQ. sin2B = BQ.AQ. sin1200 Vậy SMNPQ đạt giá trị lớn nhất khi AQ. BQ đạt giá trị lớn nhất. AQ. BQ đạt giá trị lớn nhất khi AQ = BQ = Khi đó Q là trung điểm của AB nên PQ = ; MQ = b) 1> 4,695532918 2> 71,51035775 Bài 5: Người ta tạo ra một hình lục giác từ một tờ giấy hình chữ nhật có các kích thức a, b ( a > b) bằng cách sau: Gấp tờ giấy ấy dọc theo một đường chéo rồi cắt bỏ hai tam giác ở hai bên, mở ra được một hình thoi. Lại tiếp tục gấp hình thoi ấy dọc theo đoạn thẳng nối trung điểm của một cặp cạnh đối rồi cũng cắt bỏ hai tam giác ở hai bên, mở ra được một hình lục giác. Tính giá trị đúng của tỉ số để lục giác nói trên là lục giác đều. GIẢI: Đặt tên như hình vẽ. Để lục giác trên là lục giác đều thì phần cắt bỏ hai tam giác lần thứ nhất phải là tam giác vuông có hai góc nhọn là 300 và 600. Suy ra : AI = tgADI..AD = tg300.b DI = Nên a = BI + AI = DI + AI = + tg300.b Vậy = = . Bài 6: . Tính gần đúng cạnh AC và SABC ? Giải: Ta có : = Áp dụng định lí hàm sin. Ta có : + nên p Áp dụng công thức Herong. Ta có : ( dm2) Bài 7: Cho tam giác ABC, trong đoạn BC lấy điểm X. Từ X kẻ đường thẳng song song AC cắt AB tại M; kẻ đường thẳng song song AB cắt AC tại N biết , . Tính diện tích tứ giác AMXN ? Giải: Đặt SABC = x. Ta có : Suy ra : . Cộng vế theo vế. Ta có : Vậy ( đvdt) Bài 8: Cho hình thang cân ABCD có hai đường chéo AC và BD vuông góc với nhau tại H. Cho biết đáy nhỏ AB = 3cm và cạnh bên AD = 6cm. 1. Tính diện tích hình thang ABCD? 2. Gọi M là trung điểm của CD. Tính diện tích tam giác AHM. ( Chính xác đến 5 chữ số thập phân) Giải:
Tài liệu đính kèm:
- Tai lieu boi duong MTBT phan Hinh hoc.doc
- Thiết kế bài dạy môn Hình học 9 - Tiết 39: Liên hệ giữa cung và dây
Lượt xem: 960 Lượt tải: 0
- Đề cương ôn tập Toán Lớp 9 - Giải toán bằng cách lập phương trình, hệ phương trình
Lượt xem: 303 Lượt tải: 0
- Giáo án Hình học khối 9 - Tiết 47 đến tiết 52
Lượt xem: 801 Lượt tải: 0
- Giáo án Hình học lớp 9 - Năm học 2008 - 2009 - Tiết 59: Luyện tập
Lượt xem: 810 Lượt tải: 0
- Giáo án môn Đại số 9 - Tuần 30 - Tiết 59: Kiểm tra 45 phút
Lượt xem: 690 Lượt tải: 0
- Giáo án môn Toán khối 9 - Tiết 49: Các trường hợp đồng dạng của tam giác vuông (tiếp)
Lượt xem: 908 Lượt tải: 0
- Giáo án môn học Đại số 9 - Năm học 2008 - 2009 - Tiết 15: Căn bậc ba
Lượt xem: 1027 Lượt tải: 0
- Bài tập ôn tập môn Toán 9
Lượt xem: 1070 Lượt tải: 0
- Bài soạn môn Hình học 9 - Tiết 45: Cung chứa góc
Lượt xem: 698 Lượt tải: 0
- Giáo án môn Đại số 9 - Tiết 50 đến tiết 61
Lượt xem: 910 Lượt tải: 0
Copyright © 2024 Lop9.com - Giáo án điện tử lớp 9, Các thủ thuật phần mềm hay nhất, Giáo án tiểu học hay
Từ khóa » Diện Tích Tam Giác đều Lớp 9
-
Công Thức Tính Diện Tích Tam Giác: đều, Cân, Vuông, Thường Từ A - Z
-
Công Thức Tính Diện Tích Tam Giác Lớp 9 đầy đủ
-
Công Thức Tính Diện Tích Tam Giác: Vuông, Thường, Cân, đều
-
Trọn Bộ Công Thức Tính Diện Tích Tam Giác Thường Gặp Dành Cho Học ...
-
Công Thức Tính Diện Tích Tam Giác 2022
-
[ĐÚNG NHẤT] Cách Tính Diện Tích Tam Giác đều - Top Lời Giải
-
Công Thức Tính Diện Tích Tam Giác Thường, Vuông, Cân, Đều
-
Công Thức Tính Diện Tích Tam Giác Vuông, Cân, đều Chính Xác
-
Công Thức Tính Diện Tích Tam Giác
-
Cách Tính Diện Tích Tam Giác, Công Thức Và Ví Dụ Minh Họa
-
Công Thức Tính Diện Tích Tam Giác: Vuông, đều, Cân
-
Công Thức Tính Diện Tích Tam Giác đều
-
Tam Giác? Công Thức Tính Diện Tích Tam Giác Thường, Vuông, Cân, đều