Tổng Các Hệ Số Của Tất Cả Các Số Hạng Trong Khai Triển Nhị Thức...

Đăng nhập Facebook GOOGLE Google IMG

CHỌN BỘ SÁCH BẠN MUỐN XEM

Hãy chọn chính xác nhé!

Trang chủ Lớp 11 Toán

Câu hỏi:

22/07/2024 21,109

Tổng các hệ số của tất cả các số hạng trong khai triển nhị thức (x−2y)2020 là:

A. 2021

B. 2020

C. -1

D. 1

Đáp án chính xác Xem lời giải Xem lý thuyết Câu hỏi trong đề: Trắc nghiệm Nhị thức newton có đáp án Bắt Đầu Thi Thử

Trả lời:

verified Giải bởi Vietjack

Theo khai triển nhị thức

Newton ta có:

(x-2y)2020=  ∑k=02020C2020kx2020-k.(-2y)k=  ∑k=02020C2020k.x2020-k.(-2)k.yk  

Tổng các hệ số trong khai triển là:

S=  ∑k=02020C2020k.(-2)k  

Thay x=1; y=1 ta có:

(1-2.1)2020=(-1)2020=1

Vậy tổng các hệ số của tất cả các số hạng

trong khai triển nhị thức (x-2y)2020 bằng 1

Đáp án cần chọn là: D

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm hệ số của x6 trong khai triển 1x+x33n+1 với x≠0, biết n là số nguyên dương thỏa mãn điều kiện 3Cn+12+nP2=4An2 .

Xem đáp án » 01/08/2021 17,387

Câu 2:

Hệ số của số hạng chứa x10 trong khai triển nhị thức (x+2)n biết n là số nguyên dương thỏa mãn 3nC0n−3n−1Cn1+3n−2Cn2−...+(−1)nCnn=2048 là:

Xem đáp án » 01/08/2021 3,244

Câu 3:

Tìm hệ số có giá trị lớn nhất trong khai triển đa thức P(x)=(2x+1)13=a0x13+a1x12+...+a13

Xem đáp án » 01/08/2021 2,900

Câu 4:

Đẳng thức nào sau đây sai?

Xem đáp án » 01/08/2021 2,819

Câu 5:

Tính tổng S=C1000−5C1001+52C1002−...+5100C100100

Xem đáp án » 01/08/2021 2,250

Câu 6:

Cho x là số thực dương. Khai triển nhị thức Newton của biểu thức x2+1212 ta có hệ số của số hạng chứa xm bằng 495. Tìm tất cả các giá trị của tham số m.

Xem đáp án » 01/08/2021 2,151

Câu 7:

Hệ số của x8 trong khai triển biểu thức x2(1+2x)10−x4(3+x)8 thành đa thức bằng

Xem đáp án » 01/08/2021 2,087

Câu 8:

Giá trị của biểu thức S=C20180+2C20181+22C20182+...+22017C20182017+22018C20182018 bằng:

Xem đáp án » 01/08/2021 1,421

Câu 9:

Cho S=C158+C159+C1510+...+C1515 . Tính S.

Xem đáp án » 01/08/2021 1,277

Câu 10:

Trong khai triển biểu thức F=(3+23)9 số hạng nguyên có giá trị lớn nhất là

Xem đáp án » 01/08/2021 1,244

Câu 11:

Cho n là số dương thỏa mãn 5Cnn−1=Cn3. Số hạng chứa x5 trong khai triển nhị thức Newton P=nx214−1xn với x≠0 là

Xem đáp án » 01/08/2021 1,137

Câu 12:

Cho biểu thức S=C20171009+C20171010+C20171011+C20171012+...+C20171017 . Khẳng định nào sau đây đúng?

Xem đáp án » 01/08/2021 644

Câu 13:

Giả sử có khai triển (1−2x)n=a0+a1x+a2x2+...+anxn. Tìm a5 biết a0+a1+a2=71 .

Xem đáp án » 01/08/2021 472

Câu 14:

Cho biểu thức S=Cn2+Cn3+Cn4+Cn5+...+Cnn−2 . Khẳng định nào sau đây đúng?

Xem đáp án » 01/08/2021 417 Xem thêm các câu hỏi khác »

LÝ THUYẾT

Mục lục nội dung

Xem thêm

I. Công thức nhị thức Niu- tơn

Ta có:

a+ b2= a2+​ 2ab+  b2= C20a2+​ C21.a1b1  +  C22b2a-b3= a3+​ 3a2b +​3ab2​+ b3  =  C30.a3  + C31a2b1​+​  C32a1b2+​  C33b3

- Công thức nhị thức Niu – tơn.

(a​  +  b)n  =  Cn0an  +​  Cn1.an−1b+​ ...+​  Cnk.an−kbk ​+​....+​Cnn−1abn−1+​  Cnnbn

- Hệ quả:

Với a = b = 1 ta có: 2n  = Cn0 +​ Cn1 +​...​+​ Cnn

Với a = 1; b = – 1 ta có: 0  = Cn0 −​ Cn1 +​...+​(−1)k.Cnk+​...​+(−1)n​ Cnn

- Chú ý:

Trong biểu thức ở vế phải của công thức (1):

a) Số các hạng tử là n + 1.

b) Các hạng tử có số mũ của a giảm dần từ n đến 0; số mũ của b tăng dần từ 0 đến n, nhưng tổng các số mũ của a và b trong mỗi hạng tử luôn bằng n (quy ước a0=b0=1).

c) Các hệ số của mỗi cặp hạng tử cách đều hai hạng tử đầu và cuối thì bằng nhau.

- Ví dụ 1. Khai triển biểu thức: (a – b)^5.

Lời giải:

Áp dụng công thức nhị thức Niu – tơn ta có:

Invalid <m:msup> element  =  C50a5  +​  C51.a4(−b)+Invalid <m:msup> element​  C52.Invalid <m:msup> elementa3 ​+Invalid <m:msup> element​C53Invalid <m:msup> elementa2+​  C54a+ C55=  a5  − 5a4b  +  ​10a3b2−10a2b3+​  5ab4− b5

- Ví dụ 2. Khai triển biểu thức: (3x – 2)^4.

Lời giải:

Áp dụng công thức nhị thức Niu – tơn ta có:

Invalid <m:msup> element  = Invalid <m:msup> element C40  +​Invalid <m:msup> element  C41.(−2)Invalid <m:msup> elementInvalid <m:msup> element+​  C42.Invalid <m:msup> element ​+​C43Invalid <m:msup> element(3x)+​  C44=  81x4−216x3+  ​216x2−96x+16

II. Tam giác Pa- xcan

Trong công thức nhị thức Niu – tơn ở mục I, cho n = 0; 1; … và xếp các hệ số thành dòng, ta nhận được tam giác sau đây, gọi là tam giác Pa- xcan.

Bài 3: Nhị thức Niu-tơn (ảnh 1)

- Nhận xét:

Từ công thức Cnk =  Cn−1k−1  +  Cn−1k suy ra cách tính các số ở mỗi dòng dựa vào các số ở dòng trước nó.

Ví dụ 3. C62=C51+C52=5+10=15.

Hỏi bài

Đề thi liên quan

Xem thêm »
  • Trắc nghiệm tổng hơp Toán 11 (có đáp án) 76 đề 30405 lượt thi Thi thử
  • Trắc nghiệm Đề thi Toán 11 (có đáp án) 17 đề 10072 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 1: Hàm số lượng giác và phương trình lượng giác (có đáp án) 12 đề 6509 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 4: Giới hạn (có đáp án) 7 đề 6202 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Bài 3: Một số phương trình lượng giác thường gặp (có đáp án) 8 đề 6184 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 5: Đạo hàm (có đáp án) 11 đề 4856 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Bài 2: Phương trình lượng giác cơ bản (có đáp án) 6 đề 4658 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 2: Tổ hợp - Xác suất (có đáp án) 15 đề 4424 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 1: Phép dời hình và phép đồng dạng trong mặt phẳng (có đáp án) 9 đề 4100 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Bài 1: Hàm số lượng giác (có đáp án) 6 đề 4053 lượt thi Thi thử
Xem thêm »

Từ khóa » Khai Triển Biểu Thức (x^2+x+1)^2018