Trong Các Số Phức Z Thỏa Mãn | Z^2+1 |=2| Z | Gọi Z1 Và Z2 Lần Lượt Là ...

KHỞI ĐỘNG CHO MÙA THI ĐẠI HỌC 2026

Ôn đúng trọng tâm – Học chắc từ hôm nay

BẮT ĐẦU NGAY Trong các số phức z thỏa mãn | z^2+1 |=2| z | gọi z1 và z2 lần lượt là các số phức có môđun lớn nhất Trong các số phức z thỏa mãn | z^2+1 |=2| z | gọi z1 và z2 lần lượt là các số phức có môđun lớn nhất

Câu hỏi

Nhận biết

Trong các số phức z thỏa mãn \(\left| {{z}^{2}}+1 \right|=2\left| z \right|\), gọi z1 và z2 lần lượt là các số phức có môđun lớn nhất và nhỏ nhất. Khi đó môđun lớn nhất của số phức \(w={{z}_{1}}+{{z}_{2}}\) là:

A. \(\left| \text{w} \right|=2\sqrt{2}\) B.  \(\left| \text{w} \right|=2\)  C. \(\left| \text{w} \right|=\sqrt{2}\) D.  \(\left| \text{w} \right|=1+\sqrt{2}\)

Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Ta có 

\(\begin{array}{l}\left| {{z^2} + 1} \right| = 2\left| z \right| \Leftrightarrow {\left| {{z^2} + 1} \right|^2} = 4{\left| z \right|^2} \Leftrightarrow \left( {{z^2} + 1} \right)\left( {\overline {{z^2} + 1} } \right) = 4z\overline z \\ \Leftrightarrow \left( {{z^2} + 1} \right)\left( {{{\overline z }^2} + 1} \right) = 4z\overline z \Leftrightarrow {\left( {z\overline z } \right)^2} + {z^2} + {\overline z ^2} + 1 - 4z\overline z = 0\\ \Leftrightarrow {\left( {z + \overline z } \right)^2} + {\left( {z\overline z } \right)^2} - 6z\overline z + 1 = 0\\ \Leftrightarrow {\left( {z + \overline z } \right)^2} + {\left| z \right|^4} - 6{\left| z \right|^2} + 1 = 0\\ \Leftrightarrow {\left| z \right|^4} - 6{\left| z \right|^2} + 1 = - {\left( {z + \overline z } \right)^2} \le 0\\ \Leftrightarrow 3 - 2\sqrt 2 \le {\left| z \right|^2} \le 3 + 2\sqrt 2 \\ \Leftrightarrow \sqrt 2 - 1 \le \left| z \right| \le \sqrt 2 + 1 \Rightarrow \left\{ \begin{array}{l}\left| {{z_1}} \right| = \sqrt 2 - 1\\\left| {{z_2}} \right| = \sqrt 2 + 1\end{array} \right.\end{array}\)

Dấu = xảy ra 

\( \Leftrightarrow \left\{ \begin{array}{l}\left| {{z_1}} \right| = \sqrt 2 - 1\\\left| {{z_2}} \right| = \sqrt 2 + 1\\z + \overline z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}{z_1} = \left( {\sqrt 2 - 1} \right)i\\{z_1} = \left( {1 - \sqrt 2 } \right)i\end{array} \right.\\\left[ \begin{array}{l}{z_2} = \left( {\sqrt 2 + 1} \right)i\\{z_2} = \left( { - \sqrt 2 - 1} \right)i\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left| w \right| = \left| {{z_1} + {z_2}} \right| = 2\sqrt 2 \\\left| w \right| = \left| {{z_1} + {z_2}} \right| = 2\end{array} \right.\)

Chọn A.

Ý kiến của bạn Hủy

Luyện tập

Câu hỏi liên quan

  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Trong Các Số Phức Z Thỏa Mãn Z^2+1 =2 Z