Trong Không Gian Oxyz, Cho đường Thẳng D: Beginalign & X=1+3t & Y ...

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Trong không gian Oxyz, cho đường thẳng d: beginalign  & x=1+3t & y=1+ Trong không gian Oxyz, cho đường thẳng d: beginalign  & x=1+3t  & y=1+

Câu hỏi

Nhận biết

Trong không gian \(Oxyz, \) cho đường thẳng \(d: \left \{ \begin{align} & x=1+3t \ \ & y=1+4t \ \& z=1 \ \- \end{align} \right.. \) Gọi \( \Delta \) là đường thẳng đi qua điểm \(A \left( 1; \ 1; \ 1 \right) \) và có vecto chỉ phương \( \overrightarrow{u}= \left( -2; \ 1; \ 2 \right). \) Đường phân giác của góc nhọn tạo bởi đường thẳng \(d \) và \( \Delta \) có phương trình là:

A. \(\left\{ \begin{align}  & x=1+27t \\ & y=1+t \\ & z=1+t \\\end{align} \right.\)                 B. \(\left\{ \begin{align}  & x=-18+19t \\ & y=-6+7t \\ & z=11-10t \\\end{align} \right.\)               C.   \(\left\{ \begin{align}  & x=-18+19t \\ & y=-6+7t \\ & z=-11-10t \\\end{align} \right.\)                D.  \(\left\{ \begin{align}  & x=1-t \\ & y=1+17t \\ & z=1+10t \\\end{align} \right.\)

Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Ta có: \(\overrightarrow{{{u}_{d}}}=\left( 3;\ 4;\ 0 \right)\) và \(d\) đi qua \(A\left( 1;\ 1;\ 1 \right).\)

\(\Rightarrow d\cap \Delta =A\left( 1;\ 1;\ 1 \right).\)

Phương trình đường thẳng \(\Delta :\ \ \left\{ \begin{align}  & x=1-2t \\ & y=1+t \\ & z=1+2t \\\end{align} \right..\)

Chọn \(B\left( 4;\ 5;\ 1 \right)\) là một điểm thuộc đường thẳng \(d.\)

Ta có: \(\overrightarrow{AB}=\left( 3;\ 4;\ 0 \right)\Rightarrow AB=5.\)

Lấy điểm \(C\left( 1-2t;\ 1+t;\ 1+2t \right)\in \Delta \) sao cho \(AB=AC.\)

\(\Rightarrow {{\left( -2t \right)}^{2}}+{{t}^{2}}+{{\left( 2t \right)}^{2}}=25\Leftrightarrow {{t}^{2}}=\frac{25}{9}\Leftrightarrow t=\pm \frac{5}{3}.\)

+) Với \(t=\frac{5}{3}\Rightarrow C\left( -\frac{7}{3};\ \frac{8}{3};\ \frac{13}{3} \right)\Rightarrow \overrightarrow{AC}=\left( -\frac{10}{3};\ \frac{5}{3};\ \frac{10}{3} \right).\)

Khi đó ta có: \(\cos \left( d,\ \Delta  \right)=\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left| \overrightarrow{AB} \right|.\left| \overrightarrow{AC} \right|}=\frac{-\frac{10}{3}}{5.5}=-\frac{2}{15}0\Rightarrow \angle \left( d;\ \Delta  \right)\) là góc nhọn nên ta cần lập phương trình đường phân giác trong TH này.

Ta có VTCP của đường phân giác của góc tạo bởi \(d\) và \(\Delta \) là: \(\overrightarrow{u}=\overrightarrow{AB}+\overrightarrow{AC}=\left( \frac{19}{3};\ \frac{7}{3};\ -\frac{10}{3} \right)=\frac{1}{3}\left( 19;\ 7;\ -10 \right).\)

Khi đó phương trình đường phân giác \(d'\)  đi qua \(A\left( 1;\ 1;\ 1 \right)\) và có VTCP \(\overrightarrow{u}=\left( 19;\ 7;-10 \right)\) là: \(\left\{ \begin{align}  & x=1+19t \\ & y=1+7t \\ & z=1-10t \\\end{align} \right..\)

Với \(t=-1\) ta có: \(I\left( -18;-6;\ 11 \right)\in d'.\)

Vậy đường thẳng \(d':\ \left\{ \begin{align}  & x=-18+19t \\ & y=-6+7t \\ & z=11-10t \\\end{align} \right..\)

Chọn B.

Ý kiến của bạn Hủy

Luyện tập

Câu hỏi liên quan

  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết

Đăng ký

Năm sinh20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Trong Không Gian Oxyz Cho đường Thẳng D