Trong Không Gian Oxyz, Cho Mặt Cầu (S) Tâm I(a;b;c) Bán Kính Bằng 1 ...
Có thể bạn quan tâm
- Câu hỏi:
Trong không gian Oxyz, cho mặt cầu (S) tâm I(a;b;c) bán kính bằng 1, tiếp xúc mặt phẳng (Oxz). Mệnh đề nào dưới đây đúng?
- A. \(\left| a \right| = 1.\)
- B. \(a + b + c = 1.\)
- C. \(\left| b \right| = 1.\)
- D. \(\left| c \right| = 1.\)
Lời giải tham khảo:
Đáp án đúng: C
Gọi H là hình chiếu vuông góc của điểm I lên mặt phẳng (Oxz) suy ra H(a;0;c).
Do đó bán kính của mặt cầu \(R = IH = \sqrt {{b^2}} = 1 \Rightarrow \left| b \right| = 1\)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 160666
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2020 trường THPT chuyên Hùng Vương Gia Lai có đáp án
50 câu hỏi | 90 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong mặt phẳng phức, cho số phức \(z=1+2i\). Điểm biểu diễn cho số phức \(\bar z\,(1 + i)\) là điểm nào sau đây ?
- Trong mặt phẳng cho một tập hợp gồm 6 điểm phân biệt. Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) có điểm đầu và điểm cuối thuộc tập hợp này ?
- Cho khối cầu có thể tích là \(\frac{{500\pi }}{3}\). Bán kính khối cầu đã cho bằng
- Tập xác định của hàm số \(y = {\left( {x - 5} \right)^{\sqrt 5 }} + {\log _2}(x - 1)\) là
- Cho số phức \(z = 3 + i\). Phần ảo của số phức \(3z + 1 + 2i\) bằng
- Trong không gian Oxyz, cho mặt cầu (S) tâm I(a;b;c) bán kính bằng 1, tiếp xúc mặt phẳng (Oxz). Mệnh đề nào dưới đây đúng?
- Trong không gian Oxyz, điểm nào sau đây không thuộc đường thẳng d: \(\left\{ \begin{array}{l} x = 1 + 2t\\ y = 3 - 4t\\ z = 6 - 5t \end{array} \right.\)?
- Hàm số nào dưới đây có đồ thị dạng như đường cong trong hình bên?
- Cho hàm số f(x) có bảng biến thiên như sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
- Phương trình \({3^{2x + 1}} = 27\) có nghiệm là
- Trong không gian Oxyz, cho hai điểm A(-1;2;5), B(3;-6;3). Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng (Oyz) là điểm nào dưới đây ?
- Cho hàm số f(x) có bảng biến thiên như sau Hàm số đã cho đạt cực tiểu tại
- Cho khối lăng trụ có diện tích đáy bằng \(4{a^2}\) và khoảng cách giữa hai đáy bằng a. Thể tích của khối lăng trụ đã cho bằng
- Cho khối nón có bán kính đáy r = 2 chiều cao \(h = \sqrt 3 .\) Thể tích của khối nón đã cho là
- Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {x + 1} \right) < {\log _{\frac{1}{2}}}\left( {2x - 5} \right)\) là
- Cho dãy số \(({u_n})\) xác định bởi \({u_1} = 1\) và \({u_{n + 1}} = {u_n} + 7\) với mọi \(n \ge 1\). Số hạng tổng quát của dãy số \(({u_n})\) là
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, chiều cao có độ dài bằng 3a. Thể tích khối chóp S.ABCD bằng
- Cho hình trụ có độ dài đường sinh l = 5 và bán kính đáy r = 3. Diện tích xung quanh hình trụ đã cho bằng
- Mệnh đề nào dưới đây đúng ?
- Với a, b là các số thực cùng dấu và khác 0, \({\log _2}\left( {ab} \right)\) bằng
- Nếu \(\int\limits_1^3 {f(x)dx = 2} \) và \(\int\limits_1^3 {g(x)dx = \,1} \) thì \(\int\limits_1^3 {\left[ {3f(x) + 2g(x)} \right]dx} \) bằng
- Cho hai số phức \({z_1} = 2 + 3i\), \({z_2} = 1 + i\) và \(z = {z_1} + 3{z_2}\). Số phức liên hợp của số phức z là
- Trong không gian Oxyz, cho mặt phẳng \((P):x - 3z + 2 = 0\). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)?
- Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{x}\) là
- Cho hàm số bậc bốn có đồ thị như hình bên dưới. Số nghiệm của phương trình là
- Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), \(SA = \frac{{a\sqrt 3 }}{2}\), tam giác ABC đều cạnh bằng a (minh họa như hình dưới). Góc tạo bởi giữa mặt phẳng(SBC và (ABC) bằng
- Cho hàm số y=f(x) liên tục trên R, biết \(f'(x) = {x^2}\left( {x - 1} \right)\left( {x - 3} \right){\left( {x + 2} \right)^2},\forall x \in R\) . Giá trị lớn nhất của hàm số f(x) trên đoạn [-2;3] là
- Tập nghiệm của bất phương trình \(\log _2^2x - 3{\log _2}x + 2 \le 0\) là
- Số giao điểm của đồ thị hàm số $(f(x) = {x^3} + x + 1\) và đường thẳng y=1 là
- Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):2x - y + 2z - 3 = 0\). Phương trình đường thẳng d đi qua A(2;-3;-1) song song \(\alpha \) và mặt phẳng (Oyz) là
- Xét \(I = \int\limits_0^{\frac{\pi }{2}} {{{\cos }^3}x} .{\sin ^2}xdx\), nếu đặt $\(t = \sin x\) thì I bằng
- Cho a, b là các số thực dương và \(a \ne 1\) thỏa mãn \({\log _a}b = \frac{b}{9}\) và \({\log _3}a = \frac{{27}}{b}.\) Hiệu a-b bằng
- Gọi S là diện tích của hình phẳng giới hạn bởi các đồ thị hàm số \(y = {x^2} + 3\) và y=4x. Mệnh đề nào dưới đây đúng ?
- Trong không gian Oxyz, cho hình chóp S.ABCD có đáy là hình vuông và SA vuông góc với đáy.
- Cho hai số phức \(z_1\) và \(z_2\) thỏa mãn \({z_2} \ne 0;{z_1} + {z_2} \ne 0\) và \(\frac{{{z_1}}}{{{z_1} + {z_2}}} = 1 + \frac{{2{z_1}}}{{{z_2}}}\) . Môđun của số phức \(\frac{{{z_1}}}{{{z_2}}}\)bằng
- Hàm số \(y = {x^3} - 3x + 3\) có bao nhiêu điểm cực trị trên khoảng \(\left( { - 1;\frac{4}{3}} \right)\)?
- Cho số phức \(z = a + bi{\rm{ }}\left( {a;{\rm{ }}b \in R} \right)\) thỏa mãn \(iz = 2\left( {\bar z - 1 - i} \right).\) Tổng a+b bằng
- Trong không gian, cho tam giác ABC vuông tại A, \(\widehat {ABC} = {30^o},AB = a\sqrt 3 \). Khi quay tam giác ABC xung quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh của hình nón đó bằng
- Bộ Y tế phát đi một thông tin tuyên truyền về phòng chống dịch COVID-19. Thông tin này lan truyền đến người dân theo công thức \(P(t) = \frac{1}{{1 + a{e^{ - kt}}}}\) , với P(t) là tỉ lệ dân số nhận được thông tin vào thời điểm t và a, k là các hằng số dương. Cho a=3, \(k = \frac{1}{2}\) với t đo bằng giờ. Hỏi cần phải ít nhất bao lâu để hơn 90% dân số nhận được thông tin ?
- Cho hàm số \(f(x) = \frac{{ax + b}}{{cx + d}} (a,b,c,d \in R \) và \(c \ne 0\) ). Biết rằng đồ thị hàm số đã cho đi qua điểm (-1;7) và giao điểm hai tiệm cận là (-2;3). Giá trị biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng
- Cho lăng trụ đứng tam giác ABC.A'B'C' có đáy là một tam giác vuông cân tại B, AB = AA' = 2a, M là trung điểm BC ( minh họa như hình dưới). Khoảng cách giữa hai đường thẳng AM và B'C' bằng
- Cho hình trụ có chiều cao bằng 5. Biết rằng một mặt phẳng không vuông góc với đáy và cắt hai mặt đáy của hình trụ theo hai dây cung AB, CD mà AB = CD = 5, diện tích tứ giác ABCD bằng 30(minh họa như hình dưới). Diện tích xung quanh hình trụ đã cho bằng
- Cho hình chóp S.ABC, mặt phẳng (SBC) vuông góc với mặt phẳng (ABC), cạnh SB = SC = 1, \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA} = {60^o}\) . Gọi là các điểm lần lượt thuộc các cạnh sao cho \(SA = x\,SM\,\,(x > 0)\), \(SB = 2SN\). Giá trị x bằng bao nhiêu để thể tích khối tứ diện SCMN bằng \(\frac{{\sqrt 2 }}{{32}}\)?
- Cho hàm số y = f(x) liên tục và là hàm số lẻ trên đoạn [-2;2]. Biết rằng \(\int\limits_{ - 1}^0 {f(x)dx} = - 1\), \(\int\limits_{\frac{1}{2}}^1 {f( - 2x)dx} = 2\) . Mệnh đề nào dưới đây đúng?
- Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ bên dưới. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình \(f\left( {\sin x} \right) - m + 2 = 2\sin x\) có nghiệm thuộc khoảng \(\left( {0;\,\pi } \right)\). Tổng các phần tử của S bằng
- Xét các số thực dương \(a,b,x,y\) thỏa mãn \(a > 1,{\kern 1pt} {\kern 1pt} {\kern 1pt} b > 1\) và \({\kern 1pt} {a^{{x^2}}} = {b^{{y^2}}} = {\left( {ab} \right)^2}\). Giá trị nhỏ nhất của biểu thức \({\kern 1pt} P = 2\sqrt 2 \,x + y\) thuộc tập hợp nào dưới đây ?
- Cho hàm số \(f(x) = \left| {{x^3} - 3{x^2} + m} \right|.\) Có bao nhiêu số nguyên m để giá trị nhỏ nhất của hàm số f(x) trên đoạn [1;3] không lớn hơn 2020?
- Cho hàm số \(f(x) = {x^3} + x + 2\). Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \(f\left( {\sqrt[3]{{{f^3}(x) + f(x) + m}}} \right) = - {x^3} - x + 2\) có nghiệm \(x \in [ - 1;2]\)?
- Tìm tất cả các giá trị của tham số m để đồ thị hàm số \(y = \frac{{m{x^3} - 2}}{{{x^3} - 3x + 2}}\) có đúng hai đường tiệm cận đứng
- Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập hợp các tam giác có các đỉnh là các đỉnh của đa giác đều trên. Tính xác suất P để chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều.
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 9 Lớp 12 Deserts
Tiếng Anh 12 mới Unit 5
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Hoá Học 12 Chương 5
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Sinh Học 12 Chương 2 Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 3 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Tây Tiến
Ai đã đặt tên cho dòng sông
Quá trình văn học và phong cách văn học
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » S Không Gian
-
Không Gian S / Thiết Kế: H&P Architects
-
Không Gian S - Construction Plus Asia
-
Không Gian S - Tạp Chí Kiến Trúc
-
Không Gian Ba Chiều – Wikipedia Tiếng Việt
-
Không Gian Vectơ – Wikipedia Tiếng Việt
-
Cách Giải Các Dạng Toán Phương Trình đường Thẳng Trong Không Gian
-
Chương 3 - Không Gian Vector | CTCT - Chúng Ta Cùng Tiến
-
Viết Phương Trình Mặt Cầu Trong Không Gian Oxyz: Lý Thuyết Và Bài Tập
-
Trong Không Gian Oxyz, Cho Mặt Cầu Mặt Phẳng = 0. Giá Trị Của M để ...
-
Trong Không Gian (Oxyz ), Cho Mặt Cầu (( C ): , , ,(( (x + 1) )^2) + (( (y
-
2) Và B(3;1;4). Mặt Cầu (S) đường Kính AB Có Phương Trình Là
-
Trong Không Gian Oxyz Cho điểm E( 1;1;1 ) Mặt Cầu ( S ):x^2 + Y^2 + ...
-
Trong Không Gian Với Hệ Tọa độ Oxyz, Cho Mặt Cầu (S)