Trong Mặt Phẳng Tọa độ Oxy Cho đường Tròn (C): (x-1)^2+(y-1 ... - Olm

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Thư viện số
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM

(Từ ngày 12/12) Lớp live ôn thi cuối kỳ I hoàn toàn miễn phí - Tham gia ngay!!!

Thư viện số OLM hoàn toàn mới - Đọc trọn bộ tạp chí học tập chất lượng! Xem ngay

  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
NM Nguyễn Minh Huy 4 tháng 4 2021 - olm

trong mặt phẳng tọa độ Oxy cho đường tròn (C): (x-1)^2+(y-1)^2 =25 và các điểm A(7;9), B(0;8). Tìm tọa độ điểm M thuộc (C) sao cho P=Ma+2MB đạt giá trị nhỏ nhất

#Hỏi cộng đồng OLM #Toán lớp 11 1 NT Nguyễn Tất Đạt 18 tháng 5 2021

I B A C M D

Đường tròn \(\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=25\) có tâm \(I\left(1;1\right)\) và bán kính \(R=5\)

\(\overrightarrow{IA}=\left(6;8\right)\Rightarrow IA=10=2R\)=> Đường tròn (C) chia đôi IA tại C

Gọi D là trung điểm IC, ta có: \(\frac{ID}{IM}=\frac{1}{2}=\frac{IM}{IA}\)=> \(\Delta\)IDM ~ \(\Delta\)IMA (c.g.c), từ đây MA=2MD

Suy ra \(P=2\left(MD+MB\right)\ge2BD\)(không đổi)

Dấu "=" xảy ra khi M thuộc đoạn BD hay M là giao điểm của đoạn BD với (C) 

*) Tìm M:

Ta có: C là trung điểm IA => \(C\left(4;5\right)\), D là trung điểm IC => \(D\left(\frac{5}{2};3\right)\)

\(\overrightarrow{BD}=\left(\frac{5}{2};-5\right)\Rightarrow BD:\hept{\begin{cases}x=\frac{5}{2}t\\y=8-5t\end{cases}}\); vì M thuộc BD nên \(M\left(\frac{5}{2}t;8-5t\right)\)

\(\overrightarrow{IM}=\left(\frac{5}{2}t-1;7-5t\right)\Rightarrow IM^2=\left(\frac{5}{2}t-1\right)^2+\left(7-5t\right)^2=R^2=25\)

\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=\frac{2}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}M\left(5;-2\right)\\M\left(1;6\right)\end{cases}}\)

Nếu \(M\left(5;-2\right)\)thì \(\overrightarrow{MB}=\left(-5;10\right);\overrightarrow{MD}=\left(-\frac{5}{2};5\right)\Rightarrow\overrightarrow{MB}=2\overrightarrow{MD}\)=> M nằm ngoài đoạn BD (L)

Vậy \(M\left(1;6\right)\).

Đúng(0) Các câu hỏi dưới đây có thể giống với câu hỏi trên NM NGUYỄN MINH HUY 4 tháng 4 2021

trong mặt phẳng tọa độ Oxy cho đường tròn (C): (x-1)^2+(y-1)^2 =25 và các điểm A(7;9), B(0;8). Tìm tọa độ điểm M thuộc (C) sao cho P=Ma+2MB đạt giá trị nhỏ nhất

#Hỏi cộng đồng OLM #Toán lớp 11 0 NT Ngô Tiến Thành 13 tháng 1 2023

trên trục tọa độ Oxy cho đường thẳng d: 3x-2y+5=0 và A(4;7),B(2;1)

Tìm tọa độ điểm M thuộc d sao cho : giá trị tuyệt đối của MA-2MB nhỏ nhất

(MA và MB đều là vecto nhá)

 

#Hỏi cộng đồng OLM #Toán lớp 11 1 2 2611 13 tháng 1 2023

Gọi `M(x;3/2x+5/2)`

Ta có:`|\vec{MA}-2\vec{MB}|`

`=|(4-x;7-3/2x-5/2)-2(2-x;1-3/2x-5/2)|`

`=|(x;3/2x+17/2)|`

`=\sqrt{x^2+(3/2x+17/2)^2}`

`=\sqrt{x^2+9/4x^2+51/2x+289/4}`

`=\sqrt{13/4x^2+51/2x+289/4}`

`=\sqrt{(\sqrt{13}/2 x+[51\sqrt{13}]/26)^2+289/13} >= [17\sqrt{13}]/13`

Dấu "`=`" xảy ra `<=>\sqrt{13}/2x+[51\sqrt{13}]/26=0<=>x=-51/13`

   `=>M(-51/13;-44/13)`

Đúng(2) CG Charlotte Grace 12 tháng 12 2020

Trong mặt phẳng tọa độ Oxy cho đường thẳng d: x - 2y + 2 = 0 và A(0;6), B(2;5). Tìm tọa độ điểm M trên đường thẳng d sao cho MA + MB nhỏ nhất

#Hỏi cộng đồng OLM #Toán lớp 11 2 NV Nguyễn Việt Lâm 12 tháng 12 2020

Cách 1:

Do M thuộc d, gọi tọa độ M có dạng \(M\left(2m-2;m\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(2m-2;m-6\right)\\\overrightarrow{BM}=\left(2m-4;m-5\right)\end{matrix}\right.\)

Đặt \(T=MA+MB=\sqrt{\left(2m-2\right)^2+\left(m-6\right)^2}+\sqrt{\left(2m-4\right)^2+\left(m-5\right)^2}\)

\(T=\sqrt{5m^2-20m+40}+\sqrt{5m^2-26m+41}\)

\(T=\sqrt{5\left(m-2\right)^2+\left(2\sqrt{5}\right)^2}+\sqrt{5\left(\dfrac{13}{5}-m\right)^2+\left(\dfrac{6}{\sqrt{5}}\right)^2}\)

\(T\ge\sqrt{5\left(m-2+\dfrac{13}{5}-m\right)^2+\left(2\sqrt{5}+\dfrac{6}{\sqrt{5}}\right)^2}=\sqrt{53}\)

Dấu "=" xảy ra khi và chỉ khi:

\(6\left(m-2\right)=10\left(\dfrac{13}{5}-m\right)\Leftrightarrow m=\dfrac{19}{8}\)

\(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

Đúng(2) NV Nguyễn Việt Lâm 12 tháng 12 2020

Cách 2:

Thay tọa độ A và B vào pt (d) được 2 giá trị cùng dấu âm \(\Rightarrow A;B\) nằm cùng phía so với (d)

Gọi d' là đường thẳng qua A và vuông góc với d \(\Rightarrow\) pt d' có dạng:

\(2\left(x-0\right)+1\left(y-6\right)=0\Leftrightarrow2x+y-6=0\)

Gọi C là giao điểm của d và d' \(\Rightarrow\left\{{}\begin{matrix}x-2y+2=0\\2x+y-6=0\end{matrix}\right.\)

\(\Rightarrow C\left(2;2\right)\)

Gọi D là điểm đối xứng với A qua d \(\Leftrightarrow C\) là trung điểm AD \(\Rightarrow D\left(4;-2\right)\)

Phương trình BD có dạng: \(7\left(x-2\right)+2\left(y-5\right)=0\Leftrightarrow7x+2y-24=0\)

\(MA+MB\) nhỏ nhất khi và chỉ khi M là giao điểm của BD

\(\Rightarrow\) Tọa độ M thỏa mãn: \(\left\{{}\begin{matrix}7x+2y-24=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)

Đúng(2) Xem thêm câu trả lời T Tyra 6 tháng 9 2021

Trong mặt phẳng Oxy cho đường tròn (C): x^2+y^2=4 và đường thẳng d: x- y +2=0. Gọi M là điểm thuộc đường tròn (C) sao cho khoảng cách đến d là lớn nhất. Phép vị tự tâm O tỉ số k = ✓2 biến điểm M thành điểm M' có tọa độ là?

#Hỏi cộng đồng OLM #Toán lớp 11 0 TC Thầy Cao Đô Giáo viên VIP 12 tháng 5 2021 - olm Trong mặt phẳng tọa độ $Oxy$, cho hình bình hành $ABCD$, đỉnh $A\left(1 ; -2\right)$, $BD:\left\{\begin{aligned}&{x=4+t} \\ &{y=-4-2t} \end{aligned}\right.$, $t\in \mathbb{R}$ và $H\left(\dfrac{133}{37} ; -\dfrac{58}{37} \right)$ là hình chiếu của $A$ trên $CD$. 1. Lập phương trình các đường thẳng $CD , AB$. 2. Xác định tọa độ các đỉnh $D ,C, B$. 3. Xác định vị trí điểm $M\in BD$ sao cho $MA^{2} +MB^{2} +MC^{2} +MD^{2}$ đạt giá...Đọc tiếp

Trong mặt phẳng tọa độ $Oxy$, cho hình bình hành $ABCD$, đỉnh $A\left(1 ; -2\right)$, $BD:\left\{\begin{aligned}&{x=4+t} \\ &{y=-4-2t} \end{aligned}\right.$, $t\in \mathbb{R}$ và $H\left(\dfrac{133}{37} ; -\dfrac{58}{37} \right)$ là hình chiếu của $A$ trên $CD$.

1. Lập phương trình các đường thẳng $CD , AB$.

2. Xác định tọa độ các đỉnh $D ,C, B$.

3. Xác định vị trí điểm $M\in BD$ sao cho $MA^{2} +MB^{2} +MC^{2} +MD^{2}$ đạt giá trị bé nhất.

#Hỏi cộng đồng OLM #Toán lớp 11 2 NT Nguyễn Tất Đạt 16 tháng 5 2021

A B C D H I (1;-2) ( 133 37 ; 58 37 ) BD:2x+y-4=0

1. \(\overrightarrow{AH}\left(\frac{96}{37};\frac{16}{37}\right)\). AB và CD cùng vuông góc với AH => AB,CD có VTPT cùng phương với vt AH

Đường thẳng AB: đi qua A(1;-2), VTPT (6;1) => \(AB:6\left(x-1\right)+\left(y+2\right)=0\Leftrightarrow6x+y-4=0\)

Đường thẳng CD: đi qua H(133/37;-58/37), VTPT (6;1)

=>  \(CD:6\left(x-\frac{133}{37}\right)+\left(y+\frac{58}{37}\right)=0\Leftrightarrow6x+y-20=0\)

2. Xét hệ \(\hept{\begin{cases}2x+y=4\\6x+y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=4\end{cases}\Rightarrow}B\left(0;4\right)}\)

\(\hept{\begin{cases}2x+y=4\\6x+y=20\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}\Rightarrow}D\left(4;-4\right)}\)

BD và AC có trung điểm là \(I\left(2;0\right)\), suy ra \(C\left(3;2\right)\).

3. Ta có: \(MA^2+MC^2=2MI^2+\frac{AC^2}{2};MB^2+MD^2=2MI^2+\frac{BD^2}{2}\)

\(\Rightarrow MA^2+MB^2+MC^2+MD^2=4MI^2+\frac{AC^2+BD^2}{2}\ge\frac{AC^2+BD^2}{2}\)(không đổi)

Vậy biểu thức đạt Min khi M trùng với I(3;2).

Đúng(0) NV Nguyễn VIP 5 sao 19 tháng 5 2021

1. →AH(9637 ;1637 ). AB và CD cùng vuông góc với AH => AB,CD có VTPT cùng phương với vt AH

Đường thẳng AB: đi qua A(1;-2), VTPT (6;1) => AB:6(x−1)+(y+2)=0⇔6x+y−4=0

Đường thẳng CD: đi qua H(133/37;-58/37), VTPT (6;1)

=>  CD:6(x−13337 )+(y+5837 )=0⇔6x+y−20=0

2. Xét hệ {

2x+y=4
6x+y=4

⇔{

x=0
y=4

⇒B(0;4)

{

2x+y=4
6x+y=20

⇔{

x=4
y=−4

⇒D(4;−4)

BD và AC có trung điểm là I(2;0), suy ra C(3;2).

3. Ta có: MA2+MC2=2MI2+AC22 ;MB2+MD2=2MI2+BD22 

⇒MA2+MB2+MC2+MD2=4MI2+AC2+BD22 ≥AC2+BD22 (không đổi)

Vậy biểu thức đạt Min khi M trùng với I(3;2).

Đúng(0) Xem thêm câu trả lời TH trong hoang 15 tháng 11 2021

Trong mặt phẳng Oxy , cho hình bình hành ABCD với A(3;2) ; D(4;1). Biết điểm B di động trên đường tròn (C):(x-2)^2+(y+1)^2=32 điểm C thuộc đường thẳng (d):x+y-1=0 .Biết rằng C có hoành độ dương . Tọa độ điểm C là

#Hỏi cộng đồng OLM #Toán lớp 11 0 MT Mai Thị Thúy 14 tháng 8 2021

Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC có B(-1,-2), C(6,-1) nội tiếp đường tròn tâm I(2,2) .Gọi M là trung điểm AC , H là hình chiếu của M lên AB .Tìm tọa độ của A biết rằng H thuộc đương thẳng 5x-y-1=0 và H là hoành độ dương

#Hỏi cộng đồng OLM #Toán lớp 11 0 MT Mai Thị Thúy 15 tháng 8 2021

Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC có B(-1,-2), C(6,-1) nội tiếp đường tròn tâm I(2,2) .Gọi M là trung điểm AC , H là hình chiếu của M lên AB .Tìm tọa độ của A biết rằng H thuộc đương thẳng 5x-y-1=0 và H là hoành độ dương

#Hỏi cộng đồng OLM #Toán lớp 11 0 PT Pham Trong Bach 2 tháng 7 2018 Trong mặt phẳng tọa độ Oxy cho điểm A(9,0)  và đường tròn (C): x - 2 2 + y - 1 2   =   25 . Gọi ∆1;∆2 là hai tiếp tuyến của (C) đi qua A. Tính tổng khoảng cách từ O đến hai đường thẳng ...Đọc tiếp

Trong mặt phẳng tọa độ Oxy cho điểm A(9,0)  và đường tròn (C): x - 2 2 + y - 1 2   =   25 . Gọi ∆1;∆2 là hai tiếp tuyến của (C) đi qua A. Tính tổng khoảng cách từ O đến hai đường thẳng  ∆1;∆2.

A.  36 5

B.  37 5

C. 73 5

D.   63 5

#Hỏi cộng đồng OLM #Toán lớp 11 1 CM Cao Minh Tâm 2 tháng 7 2018

Chọn D

Tổng khoảng cách từ O đến hai tiếp tuyến bằng

Đúng(0) Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • -❇️🆗𝕰𝔛𝕻𝔈𝕽ℑ𝕰𝔑𝕮𝔈𝕯✳️𝕻𝔈𝕺𝔓𝕷𝔈🆒❎- 25 GP
  • SV Sinh Viên NEU 12 GP
  • ︻デ═一👑𝓚𝓐𝓞𝓡𝓤 𝓜𝓘𝓣𝓞𝓜𝓐👑𝓕𝓕一═デ︻ 12 GP
  • NV ✫⊰ Ngô Vũ ༒ Công Vinh ⊱✫ VIP 10 GP
  • B bothaybuonvl :(😶😑😐😕🙁😟😞😖😦😧😢😰😨😱🥶🥴🤯 6 GP
  • NT Nguyễn Thị Thiên Ái 6 GP
  • ES elm Sun (2012) 4 GP
  • B bame 4 GP
  • NS Nguyễn Sỹ Quang 4 GP
  • FC FA Cệ Bố Ok 4 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học trực tuyến OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » Trong Mặt Phẳng Oxy Cho đường Tròn C (x-1)^2+(y+2)^2=4