Tứ Giác Nội Tiếp Bài Tap - Toán 9 - Nguyễn Tiến Đức - Thư Viện đề Thi

Đăng nhập / Đăng ký VioletDethi
  • ViOLET.VN
  • Bài giảng
  • Giáo án
  • Đề thi & Kiểm tra
  • Tư liệu
  • E-Learning
  • Kỹ năng CNTT
  • Trợ giúp

Thư mục

Các ý kiến mới nhất

  • Có đáp án không ạ...
  • Đáp án xem ở đâu thầy ơi....
  • cho em xin file nghe với ạ  ...
  • file nghe chắc phải nhắn tin thằng cho tác giả,...
  • Toán 12: Bộ đề thi Giữa kỳ 1 (CD 2024-2025)...
  • Toán 11: Đề thi HK1 (CD 2024-2025)...
  • em cám ơn thầy đã chia sẻ, bộ câu hỏi...
  • rất hay ạ, dạng đề cương này cũng bổ trợ...
  • phần này cô có đáp án không ạ? em thấy...
  • tính ra số lượng câu hỏi tuy không nhiều nhưng...
  • rất hữu ích, nhất là đối với các em học...
  • Toán 5: Bài tập chia một số Thập phân cho...
  • cái này thì cô giáo cho sang bên Bài Giảng...
  • Cảm ơn cô đã chia sẻ tài liệu ôn tập...
  • Đăng nhập

    Tên truy nhập Mật khẩu Ghi nhớ   Quên mật khẩu ĐK thành viên

    Quảng cáo

    Tin tức thư viện

    Chức năng Dừng xem quảng cáo trên violet.vn

    12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
  • Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word
  • Thử nghiệm Hệ thống Kiểm tra Trực tuyến ViOLET Giai đoạn 1
  • Xem tiếp

    Hướng dẫn sử dụng thư viện

    Bài 4: Quản lí ngân hàng câu hỏi và sinh đề có điều kiện

    12808795 Ở , , chúng ta đã biết cách tạo một đề thi từ ngân hàng có sẵn hay tự nhập câu hỏi, tạo cây thư mục để chứa đề thi cho từng môn. Trong bài này chung ta tiếp tục tìm hiểu cách xây dựng và quản lý ngân hàng câu hỏi mà mình đã đưa lên và...
  • Bài 3: Tạo đề thi trắc nghiệm trực tuyến dạng chọn một đáp án đúng
  • Bài 2: Tạo cây thư mục chứa câu hỏi trắc nghiệm đồng bộ với danh mục SGK
  • Bài 1: Hướng dẫn tạo đề thi trắc nghiệm trực tuyến
  • Lấy lại Mật khẩu trên violet.vn
  • Kích hoạt tài khoản (Xác nhận thông tin liên hệ) trên violet.vn
  • Đăng ký Thành viên trên Thư viện ViOLET
  • Tạo website Thư viện Giáo dục trên violet.vn
  • Xác thực Thông tin thành viên trên violet.vn
  • Hỗ trợ trực tuyến trên violet.vn bằng Phần mềm điều khiển máy tính từ xa TeamViewer
  • Xem tiếp

    Hỗ trợ kĩ thuật

    • (024) 62 930 536
    • 091 912 4899
    • hotro@violet.vn

    Liên hệ quảng cáo

    • (024) 66 745 632
    • 096 181 2005
    • contact@bachkim.vn

    Tìm kiếm Đề thi, Kiểm tra

    Đưa đề thi lên Gốc > Trung học cơ sở > Toán học > Toán 9 >
    • tứ giác nội tiếp bài tap
    • Cùng tác giả
    • Lịch sử tải về

    tứ giác nội tiếp bài tap Download Edit-0 Delete-0

    Wait
    • Begin_button
    • Prev_button
    • Play_button
    • Stop_button
    • Next_button
    • End_button
    • 0 / 0
    • Loading_status
    Nhấn vào đây để tải về Báo tài liệu có sai sót Nhắn tin cho tác giả (Tài liệu chưa được thẩm định) Nguồn: Người gửi: Nguyễn Tiến Đức Ngày gửi: 19h:25' 24-02-2016 Dung lượng: 2.0 MB Số lượt tải: 3213 Số lượt thích: 0 người CHUYÊN ĐỀ: TỨ GIÁC NỘI TIẾPI) Các kiến thức cần nhớ1) Khái niệm:Một tứ giác có bốn đỉnh nằm trên một đường tròn được gọi là tứ giác nội tiếp đường tròn (Gọi tắt là tứ giác nột tiếp)2) Định lí- Trong một tứ giác nội tiếp, tổng số đo hai góc đối diện bằng 1800-Nếu một tứ giác có tổng số đo hai góc đối diện bằng 1800 thì tứ giác đó nội tiếp đường tròn.3) Dấu hiệu nhận biết (các cách chứng minh) tứ giác nội tiếp- Tứ giác có tổng số do hai góc đối diện bằng 1800.- Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện.- Tứ giác có bón đỉnh cách đều một điểm(mà ta có thể xác định được). Điểm đó là tâm đường tròn ngoại tiếp tứ giác.- Tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc (.II) Bài tậpBài tập 1 Cho ABC vuông ở A. Trên AC lấy diểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt Đường tròn tại S. Chứng minh rằng:a) Tứ giác ABCD nội tiếp.b) c) CA là phân giác của Bài tập 2Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Vẽ EF vuông góc với AD. Chứng minh:a) Tứ giác ABEF, tứ giác DCEF nội tiếp .b) CA là phân giác của .c) Gọi M là trung điểm của DE. Chứng minh tứ giác BCMF nội tiếpBài tập 3Tứ giác ABCD nội tiếp đường tròn đường kính AD . Hai đường chéo AC , BD cắt nhau tại E . Hình chiếu vuông góc của E trên AD là F . Đường thẳng CF cắt đường tròn tại điểm thứ hai là M . Giao điểm của BD và CF là N . Chứng minh : CEFD là tứ giác nội tiếp . Tia FA là tia phân giác của góc BFM . BE . DN = EN . BD Bài tập 4Cho tam giác ABC vuông ở A và một điểm D nằm giữa A và B . Đường tròn đường kính BD cắt BC tại E . Các đường thẳng CD , AE lần lượt cắt đường tròn tại các điểm thứ hai F , G . Chứng minh : a) Tam giác ABC đồng dạng với tam giác EBD . b) Tứ giác ADEC và AFBC nội tiếp được trong một đường tròn . c) AC song song với FG . d) Các đường thẳng AC , DE và BF đồng quy . Bài tập 5 Cho tam giác vuông ABC (; AB > AC) và một điểm M nằm trên đoạn AC (M không trùng với A và C). Gọi N và D lần lượt là giao điểm thứ hai của BC và MB với đương tròn đường kính MC; gọi S là giao điểm thứ hai giữa AD với đường tròn đường kính MC; T là giao điểm của MN và AB. Chứng minh:a. Bốn điểm A, M, N và B cùng thuộc một đường tròn.b. CM là phân giác của góc .c. .Bài tập 6Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Qua A dựng hai tiếp tuyến AM và AN với đường tròn (M, N là các tiếp điểm) và một cát tuyến bất kì cắt đường tròn tại P, Q. Gọi L là trung điểm của PQ.a/ Chứng minh 5 điểm: O; L; M; A; N cùng thuộc một đường tròn.b/ Chứng minh LA là phân giác của c/ Gọi I là giao điểm của MN và LA. Chứng minh MA2 = AI.ALd/ Gọi K là giao điểm của ML với (O). Chứng minh rằng KN // AQ.e/ Chứng minh ∆KLN cân.Bài tập 7Cho đường trũn (O; R) tiếp xỳc với đường thẳng d tại A. Trờn d lấy điểm H khụng trựng với điểm A và AH

    Từ khóa » Bài Tập Về Tứ Giác Nội Tiếp Violet