Ứng Dụng Của Khai Triển Taylor

  • Trang Chủ
  • Đăng ký
  • Đăng nhập
  • Upload
  • Liên hệ

Lớp 12, Giáo Án Lớp 12, Bài Giảng Điện Tử Lớp 12

Trang ChủToán Học Lớp 12Giải Tích Lớp 12 Ứng dụng của khai triển Taylor Ứng dụng của khai triển Taylor

Ta bắt đầu với ứng dụng tính giới hạn của khai triển Taylor. Như đã

biết quy tắc L’Hopital là một trong những kỹ thuật quan trọng để tính

giới hạn. Có thể nói một trong các nguồn gốc của quy tắc này xuất phát

từ khai triển Taylor. Việc dùng khai triển Taylor để tính giới hạn bắt

nguồn từ việc tính giới hạn của phân thức

pdf 6 trang Người đăng ngochoa2017 Lượt xem 2775Lượt tải 0 Download Bạn đang xem tài liệu "Ứng dụng của khai triển Taylor", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trênTa bắt đầu với ứng dụng tính giới hạn của khai triển Taylor. Như đã biết quy tắc L’Hopital là một trong những kỹ thuật quan trọng để tính giới hạn. Có thể nói một trong các nguồn gốc của quy tắc này xuất phát từ khai triển Taylor. Việc dùng khai triển Taylor để tính giới hạn bắt nguồn từ việc tính giới hạn của phân thức trong đó Để tính được giới hạn ta cần xác định các hệ số có tính chất sau: + là các số lớn nhất thỏa mãn và Khi đó ta có thể viết trong đó ta hiểu là đại lượng vô cùng bé cấp cao hơn khi nghĩa là Ta có ba tình huống sau xảy ra + nếu thì (ví dụ ) + nếu thì không có giới hạn (ví dụ ) + nếu thì (ví dụ ). Ta cũng mong muốn tính được giới hạn với là các hàm khá tổng quát dựa trên kỹ thuật trên, kỹ thuật sử dụng biểu diễn “vô cùng bé” hay cũng chính là khai triển Taylor dạng Peano! Vẫn đề ta khai triển Taylor như nào? Câu trả lời: ta khai triển cả Vấn đề tiếp khai triển đến bậc bao nhiêu? Câu trả lời: phụ thuộc vào mẫu số Phụ thuộc như nào? Ta cần tìm cấp hội tụ về của Để tránh chuyện hình thức, ta đi vào tính toán các ví dụ cụ thể. Tính Có Không khó khăn gì ta có khai triển Taylor của Ta chỉ cần khai triển đến bậc Ta có nên Như vậy hay giới hạn cần tìm Bạn đọc có thể tự tính các giới hạn sau Gợi ý: + tính ta có nên chỉ cần khai triển đến cấp hàm + tính ta có nên chỉ cần khai triển đến cấp hàm (chú ý ). Khai triển Taylor còn có thể áp dụng vào việc tính gần đúng, tính giới hạn chuỗi số, v.v. Dưới đây tôi trình bày một ứng dụng trong “Lý thuyết Tổ hợp”. Ứng dụng này tôi học được từ “Giáo trình Tổ hợp” của thầy Hoàng Chí Thành. Khai triển Taylor giúp ta tính được số Catalan Trước hết ta cần biết số Catalan là gì? Số Catalan là số tự nhiên, là số tất cả các cây nhị phân đầy (full binary tree) với số lá Cây nhị phân đầy là cây tại các nút không phải là lá có đúng hai nút con, nút “lá” là nút không có nút con nào. Chi tiết bạn đọc có thể xem Với dễ có Ngoài ra ta có công thức truy hồi Công thức này có được nhờ lý luận khá đơn giản sau: một cây đầy có lá gồm + một nút gốc (không là con của nút nào), + cây con trái, cũng là cây đầy, với lá và cây con phải, cũng là cây đầy, với lá. Ta chia tập các cây đầy lá thành các lớp: lớp là lớp các cây có cây con trái có lá, lớp là lớp các cây có cây con trái có lá, .v.v. Lớp mỗi cây có cách chọn cây con trái, cây con phải nên số phần tử của lớp Từ đó cộng tất cả lại ta có công thức truy hồi. Xét hàm số có khai triển Taylor trong đó hệ số là các số Catalan. Giả sử khai triển Taylor của là Không khó khăn gì ta có Từ công thức truy hồi có Do đó Giải phương trình hàm với lưu ý xác định tại ta có Để tính ta khai triển Taylor hàm Có nên Như vậy Bạn đọc có thể tự mình tính số Fibonacci nhờ phương pháp trên. Tôi nói qua về sự xuất hiện số Fibonacci. Số Fibonacci là số thỏ tại năm thứ ở đây loài thỏ này được coi là không bị chết và sinh sản theo quy luật sau: thỏ mới sinh sau một năm chưa đẻ được, từ năm thứ hai trở đi mỗi năm sinh một con. Bắt đầu từ năm con đầu tiên được sinh ra nên Năm thứ nhất con đầu chưa đẻ nên Năm thứ hai con đầu đẻ một con nên Năm thứ ba con đầu đẻ, con thứ hai chưa nên Cứ thế, ta có công thức truy hồi Ta xét chuỗi lũy thừa Bằng cách thêm bớt và dùng công thức truy hồi có

Tài liệu đính kèm:

  • pdfUng dung cua khai trien Taylor.pdf
Tài liệu liên quan
  • docĐề thi tuyển sinh đại học môn toán khối D - 2008

    Lượt xem Lượt xem: 1031 Lượt tải Lượt tải: 0

  • docNhững phương trình lượng giác khác - Lê Hồ Quý

    Lượt xem Lượt xem: 1710 Lượt tải Lượt tải: 0

  • docĐề khảo sát chất lượng lớp 12 lần 2 Môn: Toán

    Lượt xem Lượt xem: 1092 Lượt tải Lượt tải: 0

  • docKiểm tra một tiết Chương 1 Giải tích 12

    Lượt xem Lượt xem: 1119 Lượt tải Lượt tải: 0

  • docĐề thi tuyển sinh đại học môn Toán - Đề dự bị 1 – Khối A

    Lượt xem Lượt xem: 2001 Lượt tải Lượt tải: 0

  • doc100 Đề thi Đại học theo chương trình mới

    Lượt xem Lượt xem: 2342 Lượt tải Lượt tải: 0

  • docĐề thi tuyển sinh đại học môn toán khối B năm 2005

    Lượt xem Lượt xem: 2987 Lượt tải Lượt tải: 0

  • doc11 Đề thi thử tốt nghiệp theo cấu trúc của Bộ môn Toán

    Lượt xem Lượt xem: 1987 Lượt tải Lượt tải: 0

  • docĐề thi học kì 1 – Thời gian làm bài 90 phút

    Lượt xem Lượt xem: 1180 Lượt tải Lượt tải: 0

  • pdfBộ đề thi thử Đại học, cao đẳng môn Toán - Đề số 10

    Lượt xem Lượt xem: 1482 Lượt tải Lượt tải: 0

Copyright © 2025 Lop12.net - Giáo án điện tử lớp 12, Sáng kiến kinh nghiệm hay, chia sẻ thủ thuật phần mềm

Facebook Twitter

Từ khóa » Khai Triển Taylor Là Gì