Vị Trí Tương đối Của Hai đường Thẳng - Lý Thuyết Toán
Có thể bạn quan tâm
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1 3x - 2y - 6 = 0 Và D2 6 X - 2y - 8 = 0
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1 X - 2y + 1 = 0 D 2 - 3 X + 6 Y - 10 = 0
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1 X - 2y + 1 = 0 Và D2 - 3 X + 6 Y - 10 = 0
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1 X - 2y - 6 = 0 Và D2 - 3 X + 6 Y - 10 = 0
Mục Lục - Toán 9
- Bài 1: Căn thức bậc hai
- Bài 2: Liên hệ giữa phép nhân, phép chia với phép khai phương
- Bài 3: Biến đổi đơn giản biểu thức chứa căn
- Bài 4: Rút gọn biểu thức chứa căn
- Bài 5: Căn bậc ba
- Bài 6: Ôn tập chương 1
- Bài 1: Nhắc lại và bổ sung khái niệm về hàm số và đồ thị hàm số
- Bài 2: Hàm số bậc nhất
- Bài 3: Đồ thị hàm số y=ax+b (a khác 0)
- Bài 4: Vị trí tương đối của hai đường thẳng
- Bài 5: Hệ số góc của đường thẳng
- Bài 6: Ôn tập chương 2
- Bài 1: Phương trình bậc nhất hai ẩn
- Bài 2: Hệ hai phương trình bậc nhất hai ẩn
- Bài 3: Giải hệ phương trình bằng phương pháp thế
- Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số
- Bài 5: Hệ phương trình bậc nhất hai ẩn chứa tham số
- Bài 6: Giải bài toán bằng cách lập hệ phương trình
- Bài 7: Ôn tập chương 3: Hệ hai phương trình bậc nhất hai ẩn
- Bài 1: Hàm số bậc hai một ẩn và đồ thị hàm số y=ax^2
- Bài 2: Phương trình bậc hai một ẩn và công thức nghiệm
- Bài 3: Công thức nghiệm thu gọn
- Bài 4: Hệ thức Vi-ét và ứng dụng
- Bài 5: Phương trình quy về phương trình bậc hai
- Bài 6: Sự tương giao giữa đường thẳng và parabol
- Bài 7: Giải bài toán bằng cách lập phương trình
- Bài 8: Hệ phương trình đối xứng
- Bài 9: Ôn tập chương 4: HÀM SỐ Y=AX^2. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
- Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông
- Bài 2: Tỉ số lượng giác của góc nhọn
- Bài 3: Một số hệ thức về cạnh và góc trong tam giác vuông
- Bài 4: Ứng dụng thực tế tỉ số lượng giác của góc nhọn
- Bài 5: Ôn tập chương 5: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG
- Bài 1: Sự xác định của đường tròn-Tính chất đối xứng của đường tròn
- Bài 2: Đường kính và dây của đường tròn
- Bài 3: Dấu hiệu nhận biết tiếp tuyến của đường tròn
- Bài 4: Vị trí tương đối giữa đường thẳng và đường tròn
- Bài 5: Tính chất hai tiếp tuyến cắt nhau
- Bài 6: Vị trí tương đối của hai đường tròn
- Bài 7: Ôn tập chương 6: ĐƯỜNG TRÒN
- Bài 1: Góc ở tâm-Số đo cung
- Bài 2: Liên hệ giữa cung và dây
- Bài 3: Góc nội tiếp
- Bài 4: Góc tạo bởi tiếp tuyến và dây cung
- Bài 5: Góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn
- Bài 6: Cung chứa góc
- Bài 7: Đường tròn ngoại tiếp, đường tròn nội tiếp
- Bài 8: Tứ giác nội tiếp
- Bài 9: Độ dài đường tròn, cung tròn
- Bài 10: Diện tích hình tròn, diện tích quạt tròn
- Bài 11: Ôn tập chương 7: Góc với đường tròn
- Bài 1: Hình trụ. Diện tích xung quanh và thể tích hình trụ
- Bài 2: Hình nón. Hình nón cụt. Diện tích xung quanh và thể tích hình nón
- Bài 3: Hình cầu. Diện tích mặt cầu và thể tích hình cầu
- Bài 4: Ôn tập chương 8
CHƯƠNG 1: CĂN BẬC HAI-CĂN BẬC BA
CHƯƠNG 2: HÀM SỐ BẬC NHẤT
CHƯƠNG 3: HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
CHƯƠNG 4: HÀM SỐ y=ax^2. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
CHƯƠNG 5: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG
CHƯƠNG 6: ĐƯỜNG TRÒN
CHƯƠNG 7: GÓC VỚI ĐƯỜNG TRÒN
CHƯƠNG 8: HÌNH TRỤ-HÌNH NÓN-HÌNH CẦU
- Trang chủ
- Lý thuyết toán học
- Toán 9
- CHƯƠNG 2: HÀM SỐ BẬC NHẤT
- Vị trí tương đối của hai đường thẳng
1. Các kiến thức cần nhớ
Vị trí tương đối của hai đường thẳng
Cho hai đường thẳng $d:y = ax + b\,\,\left( {a \ne 0} \right)$ và $d':y = a'x + b'\,\,\left( {a' \ne 0} \right)$.
+) $d{\rm{//}}d' \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.$
+) \(d\) cắt $d'$\( \Leftrightarrow a \ne a'\).
+) \(d \equiv d' \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b = b'\end{array} \right.\).
2. Các dạng toán thường gặp
Dạng 1: Chỉ ra vị trí tương đối của hai đường thẳng cho trước. Tìm tham số $m$ để các đường thẳng thỏa mãn vị trí tương đối cho trước.
Phương pháp:
Cho hai đường thẳng $d:y = ax + b\,\,\left( {a \ne 0} \right)$ và $d':y = a'x + b'\,\,\left( {a' \ne 0} \right)$.
+) $d{\rm{//}}d' \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.$
+) \(d\) cắt $d'$\( \Leftrightarrow a \ne a'\).
+) \(d \equiv d' \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b = b'\end{array} \right.\).
Dạng 2: Viết phương trình đường thẳng
Phương pháp:
+) Sử dụng vị trí tương đối của hai đường thẳng để xác định hệ số.
Ngoài ra ta còn sử dụng các kiến thức sau
+) Ta có\(y = ax + b\) với \(a \ne 0\), \(b \ne 0\) là phương trình đường thẳng cắt trục tung tại điểm \(A\left( {0;b} \right)\), cắt trục hoành tại điểm \(B\left( { - \dfrac{b}{a};0} \right)\).
+) Điểm \(M\left( {{x_0};{y_0}} \right)\) thuộc đường thẳng \(y = ax + b\) khi và chỉ khi \({y_0} = a{x_0} + b\).
Dạng 3: Tìm điểm cố định mà đường thẳng $d$ luôn đi qua với mọi tham số $m$
Phương pháp:
Gọi $M\left( {x;y} \right)$ là điểm cần tìm khi đó tọa độ điểm $M\left( {x;y} \right)$ thỏa mãn phương trình đường thẳng $d$.
Đưa phương trình đường thẳng $d$ về phương trình bậc nhất ẩn $m$.
Từ đó để phương trình bậc nhất $ax + b = 0$ luôn đúng thì $a = b = 0$
Giải điều kiện ta tìm được $x,y$.
Khi đó $M\left( {x;y} \right)$ là điểm cố định cần tìm.
Trang trước Mục Lục Trang sauCó thể bạn quan tâm:
- Phương pháp giải các bài toán về mối quan hệ giữa hai đường thẳng
- Đường thẳng song song với mặt phẳng
- Hai mặt phẳng song song
- Một số khái niệm phương trình đường thẳng
- Ôn tập chương 6: ĐƯỜNG TRÒN
Tài liệu
Sách giáo khoa Toán 6 tập 1 - Kết Nối Tri Thức Với Cuộc Sống
Tạp chí toán học và tuổi trẻ số 489 ra tháng 3 năm 2018
Tạp chí toán học và tuổi trẻ số 493 - tháng 7 2018
Ví dụ và bài tập phương trình, bất phương trình và hệ phương trình – Trần Văn Toàn
Toán 11: Các dạng toán quy tắc đếm, hoán vị, chỉnh hợp, tổ hợp thường gặp
TopTừ khóa » Xét Vị Trí Tương đối Của Hai đường Thẳng
-
Cách Xác định Vị Trí Tương đối Của Hai đường Thẳng Cực Hay
-
Vị Trí Tương đối Của Hai đường Thẳng Trong Không Gian - Toán Lớp 12
-
Vị Trí Tương đối Của Hai đường Thẳng Trong Không Gian
-
Xét Vị Trí Tương đối Của Hai đường Thẳng
-
Vị Trí Tương đối Của 2 đường Thẳng Trong Không Gian - Toán Thầy Định
-
Phương Pháp Xác định Vị Trí Tương đối Giữa 2 đường Thẳng Hay, Chi Tiết
-
Hướng Dẫn Cách Xét Vị Trí Tương đối Của Hai đường Thẳng
-
Bài Tập Về Xét Vị Trí Tương đối Của 2 đường Thẳng Và Cách Giải
-
Công Thức Về Vị Trí Tương đối Của Hai đường Thẳng Hay, Chi Tiết Hay ...
-
Vị Trí Tương đối Hai đường Thẳng - Hệ Số Góc - Toán Lớp 9
-
Chuyên Đề Vị Trí Tương Đối Của Hai Đường Thẳng |
-
Lý Thuyết Vị Trí Tương đối Của Hai đường Thẳng Toán 9
-
[Sách Giải] Vị Trí Tương đối Của Hai đường Thẳng Trong Không Gian
-
Bài Tập Tự Luyện Vị Trí Tương đối Của Hai đường Thẳng Chọn Lọc