Viết Phương Trình đường Thẳng D đi Qua M Và Tạo Với D' Một Góc
Có thể bạn quan tâm
Viết phương trình đường thẳng d đi qua M và tạo với d’ một góc
Với Viết phương trình đường thẳng d đi qua M và tạo với d’ một góc Toán lớp 10 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Viết phương trình đường thẳng d đi qua M và tạo với d’ một góc từ đó đạt điểm cao trong bài thi môn Toán lớp 10.
A. Phương pháp giải
Cho đường thẳng ∆ và điểm M(a; b). Viết phương trình đường thẳng d đi qua M và tạo với đường thẳng ∆ một góc α.
+ Cách 1:
- Gọi n→(A; B) là VTPT của đường thẳng d.
Tìm VTPT n'→( A’; B’) của đường thẳng ∆.
- Do góc giữa đường thẳng d và ∆ bằng α nên:
Cosα =
Giải phương trình trên ta được A = k.B. Chọn A =.... ⇒ B..
⇒ VTPT của đường thẳng d
⇒ Phương trình đường thẳng d.
+ Cách 2:
- Đường thẳng ∆ có hệ số góc k1.
- Giả sử đường thẳng d có hệ số góc k2.
- Do góc giữa hai đường thẳng d và ∆ là α nên :
Tanα =
Phương trình trên là phương trình ẩn k2. Giải hệ phương trình ta được k2
⇒ Phương trình đường thẳng d.
B. Ví dụ minh họa
Ví dụ 1 : Cho đường thẳng d : 3x - 4y - 12 = 0. Phương trình các đường thẳng qua M(2 ; -1) và tạo với d một góc là
A. 7x - y - 15 = 0 ; x + 7y + 5 = 0 B. 7x + y - 15 = 0 ; x - 7y + 5 = 0
C. 7x - y + 15 = 0 ; x + 7y - 5 = 0 D. 7x + y + 15 = 0 ; x - 7y - 5 = 0
Lời giải
Gọi n→( A , B) và A2 + B2 > 0 là véc tơ pháp tuyến của ∆
Đường thẳng d có VTPT n'→( 3 ; -4)
Ta có:
⇔ 7A2 + 48AB - 7B2 = 0 ⇔
+ Với B = 7A chọn A = 1 ; B = 7 ⇒ (d) : qua M(2 ; -1) và VTPT (1 ; 7)
⇒ Phương trình (d) : 1( x - 2) + 7( y + 1) = 0 hay x + 7y + 5 = 0
+ Với A = - 7B chọn A = 7 ; B = - 1 ⇒ (d) đi qua M( 2 ; -1) và VTPT ( 7 ; -1)
⇒ Phương trình (d) : 7( x - 2) – 1( y + 1) = 0 hay 7x - y - 15 = 0
Vậy có hai đường thẳng thỏa mãn là : x + 7y + 5 = 0 và 7x - y - 15 = 0.
Chọn A.
Ví dụ 2. Viết phương trình đường thẳng (d) qua M( -1; 2) và tạo với trục Ox một góc 600.
A. √3x - y + √3 + 2 = 0 B. √3x - y - √3 + 2 = 0
C. √3x - y + 2 = 0 D. √3x + y - √3 + 2 = 0
Lời giải
Do (d) tạo với trục Ox một góc 600 nên có hệ số góc k = tan 600 = √3.
Phương trình d là: y = √3(x + 1) + 2 ⇔ √3x - y + √3 + 2 = 0 .
Chọn A.
Ví dụ 3. Biết rằng có đúng hai giá trị của tham số k để đường thẳng d: y = kx tạo với đường thẳng ∆: y = x một góc 600. Tổng hai giá trị của k bằng:
A. - 8 B. - 4 C. - 1 D. 1
Lời giải
Ta có đường thẳng d : y = kx ⇔ kx - y = 0 nên d nhận VTPT nd→( k; -1)
Đường thẳng ∆ : y = x hay x - y = 0 nên ∆ nhận VTPT n∆→( 1; -1)
Để hai đường thẳng này tạo với nhau góc 600 thì:
( nd→; n∆→) = 600 ⇒ cos(nd→; n∆→)= cos 600
= cos600 = ⇔ k2 + 1 = 2k2 + 4k + 2 ⇔ k2 + 4k + 1 = 0
Phương trình trên có hai nghiệm phân biệt theo hệ thức Vi- et ta có: k1 + k2 = - 4
Chọn B.
Ví dụ 4: Viết phương trình đường thẳng ∆ đi qua M(1;1) và tạo một góc 450 với đường thẳng d: x - y + 90 = 0
A. x - 1 = 0 B. y - 1 = 0 C. x + y - 2 = 0 D. Cả A và B đúng
Lời giải
+ Đường thẳng d có VTPT n→(1; -1) .
+ Gọi VTPT của ∆ là n'→(a; b) .
+ Do góc giữa hai đường thẳng d và ∆ là 450 nên:
cos450 =
⇔ = |a - b| ⇔ a2 + b2 = a2 - 2ab + b2
⇔ - 2ab = 0 ⇔ a = 0 hoặc b = 0
+ Nếu a = 0; chọn b = 1.
Đường thẳng ∆:
⇒ Phương trình ∆: 0(x - 1) + 1( y - 1) = 0 hay y - 1 = 0
+ Nếu b = 0; chọn a = 1.
Đường thẳng ∆:
⇒ Phương trình ∆: 1(x - 1) + 0( y - 1) = 0 hay x - 1 = 0
Chọn D.
Ví dụ 5: Viết phương trình đường thẳng ∆ qua điểm M(5; 1) và tạo thành một góc 450 với đường thẳng d: y = -2x + 4
A. y = 3x - 10 B. y = 3x - 14 C. y = x + D. Cả B và C đúng
Lời giải
Hệ số góc của đường thẳng d là k1 = -2.
Gọi hệ số góc của đường thẳng ∆ là k2.
Do góc giữa hai đường thẳng là 450 nên :
Tan450 = ⇔ 1 =
⇔
+ Với k2 = ; đường thẳng ∆ qua M(5; 1) và hệ số góc k2 nên có phương trình :
y= ( x - 5) + 1 hay y = x +
+ Với k2 = 3 đường thẳng ∆ qua M(5; 1) và hệ số góc k2 nên có phương trình :
y = 3( x - 5) + 1 hay y = 3x - 14
chọn D.
Ví dụ 6: Viết phương trình đường thẳng ∆ qua điểm M(2; 1) và tạo thành một góc 450 với đường thẳng d: 2x + 3y + 4 = 0
A. y = -5x - 10 B. y = -5x + 11 C. y = x + D. Cả B và C đúng
Lời giải
Hệ số góc của đường thẳng d là k1= -
Gọi hệ số góc của đường thẳng ∆ là k2.
Do góc giữa hai đường thẳng là 450 nên :
Tan450 = ⇔ 1 =
⇔
+ Với k2 = ; đường thẳng ∆ qua M(2; 1) và hệ số góc k2 nên có phương trình :
y = ( x - 2) + 1 hay y = x +
+ Với k2 = -5 đường thẳng ∆ qua M(2; 1) và hệ số góc k2 nên có phương trình :
y = - 5( x - 2) + 1 hay y = -5x + 11
Chọn D.
C. Bài tập vận dụng
Câu 1: Cho đường thẳng d có phương trình: x - 2y + 5 = 0. Có mấy phương trình đường thẳng qua M(2; 1) và tạo với (d) một góc 450.
A. 1 B. 2 C. 3 D. Không có.
Lời giải:
Đáp án: B
Trả lời:
Đường thẳng d có VTPT nd→( 1; -2)
Gọi ∆ là đường thẳng cần tìm; n→( A; B) là VTPT của ∆ (A2 + B2 ≠ 0)
Để ∆ lập với d một góc 450 thì:
Cos450 = ⇔ 2( A - 2B)2 = 5( A2 + B2)
⇔3A2 + 8AB - 3B2 = 0
Giả sử B ≠ 0 ⇒ 3. + 8. - 3 = 0 ⇔
+ Với A = -3B, chọn B = -1 thì A = 3 ta được phương trình ∆ qua M(2; 1) và VTPT ( 3; -1)
⇒ phương trình ∆: 3( x - 2) – 1(y - 1) = 0 hay 3x - y - 5 = 0.
+ Với B = 3A, chọn A = 1 thì B = 3 ta được phương trình ∆ qua M( 2; 1) và VTPT ( 1; 3)
⇒ Phương trình ∆: 1( x - 2) + 3( y - 1) = 0 hay x + 3y - 5 = 0
Câu 2: Cho đường thẳng (d) có phương trình: x + 3y - 3 = 0 . Viết phương trình đường thẳng qua A( -2; 0) và tạo với (d) một góc 450.
A. 2x + y + 4 = 0 hoặc x + 2y + 2 = 0 B. 2x + y + 4 = 0 hoặc x + 2y + 2 = 0
C. 2x + y + 4 = 0 hoặc x - 2y + 2 = 0 D. 2x - y + 4 = 0 hoặc x - 2y + 2 = 0.
Lời giải:
Đáp án: C
Trả lời:
Đường thẳng d có VTPT nd→( 1; 3) .
Gọi là đường thẳng cần tìm; n→(A; B) là VTPT của ∆ (A2 + B2 ≠ 0)
Để ∆ lập với ( d) một góc 450 thì:
cos450 = ⇔ 2(A + 3B)2 = 10(A2 + B2) ⇔
+ Với A = 2B, chọn B = 1 thì A = 2 ta được phương trình ∆:
⇒(∆) : 2( x + 2) + 1( y - 0) = 0 hay 2x + y + 4 = 0.
+ Với B = -2A, chọn A = 1;B = - 2 ta được phương trình ∆:
⇒(∆): 1( x + 2) – 2( y - 0) = 0 hay x - 2y + 2 = 0 .
Câu 3: Cho hai đường thẳng d1: 3x + 4y + 12 = 0 và d2: . Tìm các giá trị của tham số a để d1 và d2 hợp với nhau một góc bằng 450.
A. a = hoặc a = -14 B. a = hoặc a = 3
C. a = 5 hoặc a = -14 D. a = hoặc a = 5
Lời giải:
Đáp án: A
Trả lời:
Ta có
Đường thẳng d1 có VTPT n→( 3; 4) và đường thẳng d2 có VTCP ( a; -2) nên có VTPT n'→( 2; a) .
Để góc giữa hai đường thẳng là 450 thì:
|cos( n→; n'→ ) | = cos450 ⇔
⇔ ⇔ √2|6 + 4a| = 5.
⇔ 2( 36 + 48a + 16a2) = 25(4 + a2)
⇔ 72 + 96a + 32a2 = 100 + 25a2
⇔ 7a2 + 96a - 28 = 0 ⇔
Câu 4: Viết phương trình đường thẳng d qua N( 3; -2) và tạo với trục Ox một góc 450.
A. x - y - 1 = 0 B. x + y - 1 = 0 C. x - y - 5 = 0 D. Tất cả sai
Lời giải:
Đáp án: C
Trả lời:
Do (d) tạo với trục Ox một góc 450 nên có hệ số góc của đường thẳng (d) là
k = tan 450 = 1
Phương trình d là: y = 1( x - 3) – 2 hay x - y - 5 = 0
Câu 5: Đường thẳng ∆ đi qua giao điểm của hai đường thẳng (a) : 2x + y - 3 = 0 và (b): x - 2y + 1 = 0 đồng thời tạo với đường thẳng (c): y - 1 = 0 một góc 450 có phương trình:
A. 2x + y = 0 hoặc x - y - 1 = 0 . B. x + 2y = 0 hoặc x - 4y = 0.
C. x - y = 0 hoặc x + y - 2 = 0 . D. 2x + 1 = 0 hoặc x - 3y = 0.
Lời giải:
Đáp án: C
Trả lời:
+ Gọi A là giao điểm của hai đường thẳng (a) và ( b) thì tọa độ điểm A là nghiệm hệ :
⇒ A( 1; 1)
+Ta có đường thẳng ( c) có VTPT n1→( 0;1). Gọi VTPT của đường thẳng ∆ là n2→( x; y)
Do góc giữa đường thẳng ∆ và đường thẳng (c) bằng 450 nên :
|cos( n1→; n2→ ) | = cos450
⇔ ⇔ x2 + y2 = 2y2 ⇔ x2 = y2
⇔
+ Nếu x = y thì chọn x = y = 1.
Đường thẳng ∆: nên phương trình ∆: 1( x - 1) + 1( y - 1) = 0
Hay x + y - 2 = 0.
+ Nếu x = -y. Chọn x = 1 thì y = -1
⇒ Đường thẳng ∆: nên phương trình ∆: 1( x - 1) - 1( y - 1) = 0
Hay x - y = 0.
Vậy có hai đường thẳng thỏa mãn là : x + y - 2 = 0 hoặc x - y = 0
Câu 6: Trong mặt phẳng với hệ tọa độ Oxy, có bao nhiêu đường thẳng đi qua điểm A( 2; 0) và tạo với trục hoành một góc 450.
A. Có duy nhất. B. 2 C. Vô số. D. Không tồn tại.
Lời giải:
Đáp án: B
Trả lời:
Cho đường thẳng d và một điểm A. Khi đó.
(i) Có duy nhất một đường thẳng đi qua A song song hoặc trùng hoặc vuông góc với d.
(ii) Có đúng hai đường thẳng đi qua A và tạo với d một góc α mà 00 < α < 900.
⇒ Có hai đường thẳng qua điểm A( 2; 0) và tạo với trục hoành một góc 450.
Câu 7: Đường thẳng ∆ tạo với đường thẳng d : x + 2y - 6 = 0 một góc 450. Tìm hệ số góc k của đường thẳng ∆.
A. k = hoặc k = -3 B. k = hoặc k = 3
C. k = - hoặc k = -3 D. k = - hoặc k = 3
Lời giải:
Đáp án: A
Trả lời:
+ Đường thẳng d: x + 2y - 6 = 0 có VTPT nd→( 1; 2) .
+ Gọi đường thẳng ∆ có VTPT n∆→( a; b) ( với a2 + b2 > 0)
⇒ Phương trình đường thẳng ∆: ax + by + c = 0
+Nếu a= 0 thì đường thẳng ∆: y + c’ = 0 nhưng khi đó góc giữa d và ∆ là:
cosφ = ⇒ φ ≠ 450.
⇒ a = 0 không thỏa mãn
+ Với a ≠ 0 thì đường thẳng ∆: y = - x - nên hệ số góc k∆ =
Để hai đường thẳng d và ∆ tạo với nhau góc 450 thì :
= cos450 = ⇔ 5(a2 + b2) = 2a2 + 8ab + 8b2
⇔ 3a2 - 8ab - 3b2 = 0 ⇔
Từ khóa » Tìm Pt đường Thẳng
-
Cách để Tìm Phương Trình Của Một đường Thẳng - WikiHow
-
Các Dạng Toán Về Phương Trình đường Thẳng Trong Mặt Phẳng, Bài ...
-
Phương Trình đường Thẳng: Các Dạng, Cách Viết, Hướng Dẫn Giải Bài ...
-
Viết Phương Trình đường Thẳng đi Qua 2 điểm - DINHNGHIA.VN
-
Phương Trình đường Thẳng: Các Dạng, Cách Viết, Bài Tập Có Lời Giải Từ A
-
Cách Viết Phương Trình đường Thẳng đi Qua Hai điểm Cực Nhanh
-
Viết Phương Trình đường Thẳng đi Qua 2 điểm
-
Viết Phương Trình Đường Thẳng Đi Qua 1 Điểm, Viết Phương Trình ...
-
Phương Trình đường Thẳng đi Qua 2 điểm Lớp 10 - Toán Thầy Định
-
Cách Viết Phương Trình đường Thẳng đi Qua 2 điểm - Học
-
Cách Để Tìm Phương Trình Đường Thẳng Đi Qua Hai Điểm Cực ...
-
Cách Viết Phương Trình Tổng Quát Của đường Thẳng Lớp 10 Cực Hay
-
Cách Viết Phương Trình đường Thẳng Song Song Với ...
-
Cách Viết Phương Trình đường Thẳng Khi Biết 2 điểm