Với Các Số Thực A Và B Thỏa Mãn A2+b2=2. Tìm Gtnn Của Biểu Thức P ...

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Thư viện số
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM

(Từ ngày 12/12) Lớp live ôn thi cuối kỳ I hoàn toàn miễn phí - Tham gia ngay!!!

 Mở bộ đề mới - nhận quà VIP liền tay

  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
TK Trần Khánh Quyên 9 tháng 8 2021 - olm

Với các số thực a và b thỏa mãn a2+b2=2. tìm gtnn của biểu thức P= 3(a+b) +ab

giúp m với m cảm ơn a

#Hỏi cộng đồng OLM #Toán lớp 9 1 NV Nguyễn Văn Lâm ( ✎﹏IDΣΛ亗 ) 9 tháng 8 2021

\(a^2+b^2=2\)

\(\Leftrightarrow\left(a+b\right)^2-2ab=2\)

\(\Leftrightarrow2ab=\left(a+b\right)^2-2\)

Theo đề ra: \(P=3\left(a+b\right)+ab\)

\(\Leftrightarrow2P=6\left(a+b\right)+2ab\)

\(=6\left(a+b\right)+\left(a+b\right)^2-2\)

\(=\left(a+b\right)^2+2.3\left(a+b\right)+9-9-2\)

\(=[\left(a+b\right)+3]^2-11\)

\(\Leftrightarrow P=\frac{1}{1}\left(a+b+3\right)^2-\frac{11}{2}\)

Ta có: \(\left(a+b+3\right)^2\ge0\forall a,b\inℝ\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+3\right)^2-\frac{11}{2}\ge\frac{-11}{2}\forall a,b\inℝ\)

\(\Leftrightarrow MinP=\frac{-11}{2}\)

Đúng(0) Các câu hỏi dưới đây có thể giống với câu hỏi trên NN ngọc ngọc 27 tháng 5 2016 - olm

cho 3 số thực a,b,c thỏa mãn b2 +c2 =< a2 .Tìm GTNN của biểu thức P =\((1/a^2) (b^2 +c^2) +a^2 [(1/b^2)+(1/c^2)]\)

 

#Hỏi cộng đồng OLM #Toán lớp 9 0 LD l҉o҉n҉g҉ d҉z҉ 29 tháng 10 2020 - olm

Cho các số thực dương a,b,c thỏa mãn a + b2 + c3 = 325/9 .

Tìm GTNN của biểu thức P = a2 + b3 + c4

#Hỏi cộng đồng OLM #Toán lớp 9 0 LP Lê Phương Linh 13 tháng 8 2016 - olm 1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

#Hỏi cộng đồng OLM #Toán lớp 9 1 NH Nguyễn Huy Tú 18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

Đúng(0) TD tran duy anh 4 tháng 6 2019 - olm

Cho biểu thức P=a4+b4-ab,với a,b là cá số thực thỏa mãn a2+b2+ab=3.Tìm GTLN và GTNN của P

#Hỏi cộng đồng OLM #Toán lớp 9 1 T T.Ps 4 tháng 6 2019

#)Giải :

Ta có : \(P=a^4+b^4+2-2-ab\)

Áp dụng BĐT cô si, ta có : 

\(a^4+1\ge2a^2\)dấu = xảy ra khi a = 1

\(b^4+1\ge2b^2\)dấu = xảy ra khi b = 1

Khi đó \(P\ge2a^2+2b^2-2-ab\)

           \(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)

           \(P\ge4-3ab\)( thay \(a^2+b^2+ab=3\)vào ) (1)

Mặt khác \(a^2+b^2\ge2ab\)

Khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)

\(\Rightarrow ab\le1\)(2)

Từ (1) và (2)

Ta có : \(P\ge4-3ab\ge4-3=1\)

Vậy P đạt GTNN là 1 khi a = b = 1

                #~Will~be~Pens~#

Đúng(0) LT Lại Thị Khánh 16 tháng 4 2018 Bài 1: x2 - 5\(\sqrt{X^2+1}=-5\) Bài 2: Với hai số thực không âm a,b thoã mãn a2 + b2 = 4. Tìm giá trị lớn nhất của biểu thức : M = \(\dfrac{ab}{a+b+2}\) Bài 3: Cho a,b là hai số dương thoai mãn \(\sqrt{ab}=\dfrac{a+b}{a-b}\) . Tìm giá trị nhỏ nhất của biểu thức P=ab + ...Đọc tiếp

Bài 1: x2 - 5\(\sqrt{X^2+1}=-5\) Bài 2: Với hai số thực không âm a,b thoã mãn a2 + b2 = 4. Tìm giá trị lớn nhất của biểu thức : M = \(\dfrac{ab}{a+b+2}\) Bài 3: Cho a,b là hai số dương thoai mãn \(\sqrt{ab}=\dfrac{a+b}{a-b}\) . Tìm giá trị nhỏ nhất của biểu thức P=ab + \(\dfrac{a-b}{\sqrt{ab}}\)

#Hỏi cộng đồng OLM #Toán lớp 9 0 AJ Angela jolie 14 tháng 2 2020

1. Với các số thực dương a, b, c thay đổi thỏa mãn điều kiện a2+b2+c2+2abc=1, tìm GTLN của biểu thức P=ab+bc+ca-abc.

2. Cho các số thực dương a, b, c thỏa mãn các điều kiện (a+c)(b+c)=4c2. Tìm GTLN, GTNN của biểu thức P=\(\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)

#Hỏi cộng đồng OLM #Toán lớp 9 1 NH Nguyễn Hiền Minh 5 tháng 3 2020

Cho a,b,c là các số thực dương: Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)

Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bbcc.

Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a

Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1

Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)

⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)

Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.

Đúng(0) A abcd 6 tháng 3 2020

.....................?

Đúng(0) HT Hà Thiên Quang 26 tháng 5 2018 - olm

Giúp mk với ạ

Cho a,b,c là các số thực dương thỏa mãn a2 + b2 + c2 = 3. Tìm GTLN của biểu thức A= ab + bc + ca + a + b + c

#Hỏi cộng đồng OLM #Toán lớp 9 1 DH Đặng Hữu Hiếu 26 tháng 5 2018

Có (a-b)²+(b-c)²+(c-a)²≥0

→ a²+b²+c²≥ab+bc+ca 

 và 3(a²+b²+c²)≥(a+b+c)²

Do đó ab+bc+ca≤3

a+b+c≤√(3(a²+b²+c²))=3

→ A≤6

Dấu "=" xảy ra khi và chỉ khi a=b=c=1

Đúng(0) PN phan ngoc nghi 9 tháng 4 2018 - olm

giải gấp với đề ôn thi vào 10

1)cho a ≠ 0 b,c là các no của p trình ẩn x : x2  -ax - 1/(2a2) = 0

 

cmr b4 + c4 ≥ 2 + √2

2) tìm a,b nguyên dương thỏa mãn 1003a +2b = 2008

3) với x ≠ 0 tìm GTNN của biểu thức  A= ( x2 -2x+ 2014)/x2

 

#Hỏi cộng đồng OLM #Toán lớp 9 0 E elisa 1 tháng 3 2020 - olm

Cho phương trình: x2-2(m-1)x-m-3=0 (1)a) giải phương trình với m=-3b) tìm m để phương trình (1) có 2 nghiệm thỏa mãn hệ thức x21 + x22 =10c) tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc giá trị của mMn giúp mình với,mình cần gấp phần a mình làm đc rồi mn giúp mình phần b,c

#Hỏi cộng đồng OLM #Toán lớp 9 1 H hanvu 1 tháng 3 2020

b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)

\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

Vậy pt (1) có 2 nghiệm x1,x2 với mọi m

Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)

<=>\(4m^2-8m+4+2m+6=10\)

<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)

<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)

c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)

Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)

<=>\(2x_1x_2+x_1+x_2=-8\)

Đúng(0) Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • E ElmSunn 2 GP
  • AA admin ([email protected]) 0 GP
  • VT Vũ Thành Nam 0 GP
  • CM Cao Minh Tâm 0 GP
  • NV Nguyễn Vũ Thu Hương 0 GP
  • VD vu duc anh 0 GP
  • OT ♑ ঔღ❣ ๖ۣۜThư ღ❣ঔ ♑ 0 GP
  • LT lương thị hằng 0 GP
  • TT Trần Thị Hồng Giang 0 GP
  • HA Hải Anh ^_^ 0 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học trực tuyến OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » Với Các Số Thực Không âm A B