√x + 2√y = 10. Chứng Minh X+y >= 20Mọi Ng Giúp Tớ Với - Olm

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM

Mua 1 được 3: Tặng thêm VIP và bộ đề kiểm tra cuối kỳ I khi mua VIP

Lớp livestream ôn tập cuối kỳ I miễn phí dành cho học sinh, tham gia ngay!

Chọn lớp Tất cả Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ Chọn môn Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Cập nhật Hủy Cập nhật Hủy
  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn lớp Tất cả Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ Chọn môn Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Tạo câu hỏi Hủy Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
NT Nguyễn Thị Thương 29 tháng 8 2017 - olm

√x + 2√y = 10. Chứng minh x+y >= 20

Mọi ng giúp tớ với

#Toán lớp 9 1 NQ Nguyễn Quốc Gia Huy 29 tháng 8 2017

Áp dụng bđt BCS, ta có:

\(100=\left(\sqrt{x}+2\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]=5\left(x+y\right)\Rightarrow x+y\ge20.\)

Đúng(0) Các câu hỏi dưới đây có thể giống với câu hỏi trên TQ Trương Quang Thiện 8 tháng 11 2018 - olm

Cho x,y là số dương .Cho x+y=1.Chứng minh (1-1/x^2)(1-1/y^2)=1+2/xy. Nhanh lên giúp tớ nha!!!!!!

#Toán lớp 9 1 KT Không Tên 8 tháng 11 2018

\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=1+\frac{2}{xy}\)

<=> \(1-\frac{1}{x^2}-\frac{1}{y^2}+\frac{1}{x^2y^2}=1+\frac{2}{xy}\)

<=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}-\frac{1}{x^2y^2}=0\)

<=> \(\left(\frac{1}{x}+\frac{1}{y}\right)^2-\frac{1}{x^2y^2}=0\)

<=> \(\left(\frac{x+y}{xy}\right)^2-\frac{1}{x^2y^2}=0\)

<=> \(\frac{1}{x^2y^2}-\frac{1}{x^2y^2}=0\) luôn đúng

=> đpcm

Đúng(0) PU Princess U 4 tháng 3 2019 - olm

mọi người giúp tớ với =))

Cho x,y,z thực dương thỏa mãn x+y+z=3 . Chứng minh rằng :

\(\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+xz\)

Thanks with chocopice <3

#Toán lớp 9 0 N nguyenngocthach 2 tháng 12 2017 - olm

Cho hàm số f(X)=y=x^2-4x+m+1. Chứng minh rằng với mọi k thì f(x) cắt đthi hàm số y=k^2+3 tại 2 điểm phân biệt.

Làm ơn giúp mình với cảm ơn mọi người. Toán lớp 10 ạ

#Toán lớp 9 0 TC Trương Công Hoàn 14 tháng 1 2019 - olm

a) Với mọi x,y,z chứng minh rằng: \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

b) Cho \(xy=1\)\(x>y\).Chứng minh: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)

Giúp minh với

#Toán lớp 9 1 NL Nguyễn Linh Chi 14 tháng 1 2019

a) Với mọi số thực x ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)

Tương tự \(y^2+1\ge2y,z^2+1\ge2z\)

Cộng theo vế các bất phương trình trên ta có0:

\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

\(\Leftrightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

Dấu "=" xảy ra khi và chỉ khi x=y=z=1

b) \(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2}{x-y}\)

Vì x>y => x-y >0. Áp dụng bất đẳng thức cosi cho x-y>0 và 2/(x-y) >0. Ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)

Đúng(0) TH Tô Hoài Dung 13 tháng 10 2016 - olm

1/ Cho $$( x,y,z>0). Chứng minh rằng: x=y=z

2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)

3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)

Giúp mình với!

#Toán lớp 9 4 TN Thắng Nguyễn 13 tháng 10 2016

1)đề thiếu

2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)

Đpcm

3)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Đpcm

Đúng(0) MA minh anh minh anh 13 tháng 10 2016

P OI cai nay dung bat dang thuc co si do

Đúng(0) Xem thêm câu trả lời NV Nguyễn Văn A 27 tháng 7 2019

Với x,y âm .Cho x=y chứng minh không tồn tại x2 =y2

Cảm ơn!!!

#Toán lớp 9 0 TH Tô Hoài Dung 12 tháng 10 2016 - olm

1/ Cho \(x+y+x=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)( x,y,z>0). Chứng minh rằng: x=y=z

2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)

3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)

Giúp mình với!

#Toán lớp 9 1 TA Thiên An 19 tháng 5 2017

1/ Sửa đề: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\) \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\) \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có: \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\) \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\) \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\) \(\Leftrightarrow\) x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\) \(a^2+b^2+2ab-4ab\ge0\) \(\Leftrightarrow\) \(a^2-2ab+b^2\ge0\) \(\Leftrightarrow\) \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

Đúng(0) LT Loan Trinh 21 tháng 1 2019 - olm

\(T=\frac{1}{4}x^2-\frac{1}{5}y^2+\frac{1}{6}z^2\) trong đó x,y,z là các số thực thỏa\(1\le x,y,z\le4\)và x-y+z=4 . Tìm GTNN của 10\(T\)

Giải giúp tớ với

#Toán lớp 9 0 HM Hatsune Miku 5 tháng 7 2017 - olm

Mong mấy cậu giúp tớ với T^T Bạn nào giải được tớ sẽ tick cho nhé ^^

\(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

#Toán lớp 9 6 HM Hatsune Miku 5 tháng 7 2017

- Đề đầy đủ rồi nhé các bạn. KO CÓ cộng thêm căn xy bên phải đâu tại tớ nhìn bị thiếu á -.-

Đúng(0) PV Phan Văn Hiếu 5 tháng 7 2017

bạn viết lại cái đề bài đi đầy đủ ngắn gọn

Đúng(0) Xem thêm câu trả lời Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • 1 14456125 31 GP
  • N ngannek 22 GP
  • LB Lê Bá Bảo nguyên 20 GP
  • VN vh ng 15 GP
  • ND Nguyễn Đức Hoàng 12 GP
  • VT Võ Thanh Khánh Ngọc 10 GP
  • LB Lương Bảo Phương 6 GP
  • NH nguyễn hoành gia bảo 6 GP
  • KS Kudo Shinichi@ 4 GP
  • NG Nguyễn Gia Bảo 4 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học toán với OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » Chứng Minh Rằng X^2-10