Xét Sự Biến Thiên Và Vẽ đồ Thị Hàm Số Bậc Hai Hay, Chi ... - Haylamdo
Có thể bạn quan tâm
Xét sự biến thiên và vẽ đồ thị hàm số bậc hai hay, chi tiết
Với Xét sự biến thiên và vẽ đồ thị hàm số bậc hai hay, chi tiết Toán lớp 10 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập sự biến thiên và vẽ đồ thị hàm số bậc hai từ đó đạt điểm cao trong bài thi môn Toán lớp 10.
1. Phương pháp giải
Để vẽ đường parabol y = ax2 + bx + c ta thực hiện các bước như sau:
– Xác định toạ độ đỉnh
– Xác định trục đối xứng x = (-b)/(2a) và hướng bề lõm của parabol.
– Xác định một số điểm cụ thể của parabol (chẳng hạn, giao điểm của parabol với các trục toạ độ và các điểm đối xứng với chúng qua trục trục đối xứng).
– Căn cứ vào tính đối xứng, bề lõm và hình dáng parabol để vẽ parabol.
2. Các ví dụ minh họa.
Ví dụ 1: Lập bảng biến thiên và vẽ đồ thị các hàm số sau
a) y = x2 + 3x + 2 b) y = -x2 + 2√2.x
Hướng dẫn:
a) Ta có
Suy ra đồ thị hàm số y = x2 + 3x + 2 có đỉnh làđi qua các điểm A (-2; 0), B(-1; 0), C(0; 2), D (-3; 2)
Đồ thị hàm số nhận đường thẳng x = (-3)/2 làm trục đối xứng và hướng bề lõm lên trên
b) y = -x2 + 2√2.x
Ta có:
Suy ra đồ thị hàm số y = -x2 + 2√2.x có đỉnh là I(√2; 2) đi qua các điểm O (0; 0), B (2√2; 0)
Đồ thị hàm số nhận đường thẳng x = √2 làm trục đối xứng và hướng bề lõm xuống dưới.
Ví dụ 2: Cho hàm số y = x2 - 6x + 8
a) Lập bảng biến thiên và vẽ đồ thị các hàm số trên
b) Sử dụng đồ thị để biện luận theo tham số m số điểm chung của đường thẳng y = m và đồ thị hàm số trên
c) Sử dụng đồ thị, hãy nêu các khoảng trên đó hàm số chỉ nhận giá trị dương
d) Sử dụng đồ thị, hãy tìm giá trị lớn nhất, nhỏ nhất của hàm số đã cho trên [-1; 5]
Hướng dẫn:
a) y = x2 - 6x + 8
Ta có:
Suy ra đồ thị hàm số y = x2 - 6x + 8 có đỉnh là I (3; -1), đi qua các điểm A (2; 0), B(4; 0).
Đồ thị hàm số nhận đường thẳng x = 3 làm trục đối xứng và hướng bề lõm lên trên.
b) Đường thẳng y = m song song hoặc trùng với trục hoành do đó dựa vào đồ thị ta có
Với m < -1 đường thẳng y = m và parabol y = x2 - 6x + 8 không cắt nhau.
Với m = -1 đường thẳng y = m và parabol y = x2 - 6x + 8 cắt nhau tại một điểm (tiếp xúc).
Với m > -1 đường thẳng y = m và parabol y = x2 - 6x + 8 cắt nhau tại hai điểm phân biệt.
c) Hàm số nhận giá trị dương ứng với phần đồ thị nằm hoàn toàn trên trục hoành
Do đó hàm số chỉ nhận giá trị dương khi và chỉ khi x ∈ (-∞;2) ∪ (4; +∞).
d) Ta có y(-1) = 15; y(5) = 13; y(3) = -1, kết hợp với đồ thị hàm số suy ra
Từ khóa » Khảo Sát Sự Biến Thiên Và Vẽ đồ Thị Hàm Số Bậc 2 Lớp 10
-
Xét Sự Biến Thiên Và Vẽ đồ Thị Hàm Số Bậc Hai Hay, Chi Tiết - Toán Lớp 10
-
Hàm Số Bậc 2 Và Ứng Dụng Trong Giải Toán. - Kiến Guru
-
Dạng 1: Khảo Sát Sự Biến Thiên Và Vẽ đồ Thị Hàm Số Bậc Hai | 7scv
-
Cách Vẽ đồ Thị Hàm Số Bậc 2 ở Lớp 10 - Toán Thầy Định
-
Vẽ đồ Thị Và Lập Bảng Biến Thiên Của Hàm Số Bậc Hai
-
Khảo Sát Và Vẽ Đồ Thị Hàm Số Bậc 2 Ở Lớp 10, Hướng Dẫn Cách ...
-
Dạng 1: Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Hàm Số Bậc Hai ...
-
Toán 10 - Khảo Sát Hàm Số Bậc 2, Bài Tập áp Dụng - Hayhochoi
-
7 Xét Sự Biến Thiên Và Vẽ đồ Thị Hàm Số Bậc Hai- Toán 10 Mới Nhất
-
Chương 2. Tiết 9| Lập Bảng Biến Thiên Và Vẽ Đồ Thị Hàm Số Bậc 2
-
CÁCH LẬP BẢNG BIẾN THIÊN VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ BẬC ...
-
Khảo Sát Sự Biến Thiên Và Vẽ Đồ Thị Hàm Số: Lý Thuyết, Bài Tập
-
Dạng 1: Khảo Sát Sự Biến Thiên Của Hàm Số Lớp 10 Quan Trọng ...