Xét Tính đồng Biến, Nghịch Biến Của Hàm Số - Toán Lớp 9 - Haylamdo
Có thể bạn quan tâm
Xét tính đồng biến, nghịch biến của hàm số
Với Xét tính đồng biến, nghịch biến của hàm số Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Xét tính đồng biến, nghịch biến của hàm số từ đó đạt điểm cao trong bài thi môn Toán lớp 9.
Phương pháp giải
+ Hàm số y = f(x) đồng biến nếu với mọi x1; x2 thuộc tập xác định thỏa mãn x1 < x2 thì f(x1) < f(x2)
+ Hàm số y = f(x) nghịch biến nếu với mọi x1; x2 thuộc tập xác định thỏa mãn x1 < x2 thì f(x1) > f(x2)
+ Ngoài dựa vào định nghĩa, ta có thể dựa vào việc xét dấu biểu thức A = (f(x1)- f(x2))(x1 - x2) hoặc .
Nếu A > 0 (hoặc B > 0 ) thì hàm số đồng biến.
Nếu A < 0 (hoặc B < 0) thì hàm số nghịch biến.
Ví dụ minh họa
Ví dụ 1: Xét tính đồng biến, nghịch biến của các hàm số:
a) y = f(x) = 3x-7 .
b) y = g(x) = -2x+5 .
c) y = h(x) = √(x+2)
Hướng dẫn giải:
a) Lấy x1 ≠ x2 ∈ R, ta có:
Vậy hàm số đồng biến trên toàn tập số thực.
b) Lấy x1 ≠ x2 ∈ R, ta có:
Vậy hàm số y = g(x) nghịch biến trên toàn tập số thực.
c) Đkxđ : x ≥ -2.
Lấy x1 ≠ x2 thỏa mãn x1; x2 ≥ -2 ta có:
Vậy hàm số đồng biến trên tập xác định x ≥ -2.
Ví dụ 2: Chứng minh rằng :
a) f(x) = x2 + 2x + 4 đồng biến khi x > -1 và nghịch biến khi x < -1.
b) g(x) = -x2 + 4x + 1 đồng biến khi x < 2 và nghich biến khi x > 2.
Hướng dẫn giải:
a) Lấy x1 ; x2 ∈ R ta có :
+ Với mọi x1 < -1 ; x2 < -1 thì x1 + x2 + 2 < 0
Vậy hàm số f(x) = x2 + 2x + 4 nghịch biến với mọi x < -1.
+ Với mọi x1 > -1 ; x2 > -1 thì x1 + x2 + 2 > 0
Vậy hàm số f(x) = x2 + 2x + 4 đồng biến với mọi x > -1.
b) Lấy x1 ; x2 ∈ R, xét :
+ Với mọi x1 < 2 ; x2 < 2thì x1 + x2 < 4.
Do đó
Vậy hàm số f(x) = x2 + 2x + 4 nghịch biến với mọi x < -1.
+ Với mọi x1 > -1 ; x2 > -1 thì x1 + x2 + 2 > 0
Vậy hàm số f(x) = x2 + 2x + 4 đồng biến với mọi x > -1.
Ví dụ 3: Chứng minh rằng hàm số nghịch biến trên tập xác định của nó.
Hướng dẫn giải:
Đkxđ : x ≤ 1.
Ta có:
Lấy x1; x2 < 1 ta có:
Suy ra hàm số y = f(x) nghịch biến trên tập xác định của nó.
Bài tập trắc nghiệm tự luyện
Bài 1: Với x1; x2 thuộc tập D bất kì, hàm số y = f(x) được gọi là đồng biến trên tập D khi :
Lời giải:
Đáp án: D
Bài 2: Với x1; x2 thuộc tập D bất kì, hàm số y = f(x) được gọi là nghịch biến trên tập D khi :
Lời giải:
Đáp án: C
Bài 3: Cho hàm số y = 1 – x . Khẳng định nào sau đây là đúng ?
A. Hàm số có tập xác định x < 1.
B. Hàm số có tập xác định x > 1.
C. Hàm số đồng biến trên tập xác định
D. Hàm số nghịch biến trên tập xác định.
Lời giải:
Đáp án: D
Bài 4: Cho hàm số y = x2 - 6x . Hàm số đồng biến khi :
A. 0 < x < 5 B. x < 3 C. x > 3 D. -2 <x < 2.
Lời giải:
Đáp án: C
Bài 5: Hàm số nào dưới đây nghịch biến trên toàn tập số thực:
Lời giải:
Đáp án: A
Bài tập tự luận tự luyện
Bài 6: Chứng minh rằng hàm số đồng biến trên tập số thực.
Hướng dẫn giải:
Xét hàm số
Lấy x1; x2 ∈ R bất kì, ta có:
Vậy hàm số đồng biến trên tập số thực.
Bài 7: Xét tính đồng biến, nghịch biến của hàm số với x < 1.
Hướng dẫn giải:
Đkxđ: x ≤ 3/2 .
Lấy x1; x2 < 1 bất kì ta có:
Vậy hàm số nghịch biến với mọi x < 1.
Bài 8: Cho hàm số y = x2 - x + 1.
Chứng minh hàm số đồng biến khi x > 1/2 và nghịch biến khi x < 1/2.
Hướng dẫn giải:
f(x) = x2 - x + 1
+ Lấy x1; x2 < 1/2 bất kì ta có:
Với x1; x2 < 1/2 thì x1 + x2 < 1 nên x1 + x2 - 1 < 0 .
Hay hay hàm số nghịch biến với x < 1/2 .
+ Lấy x1; x2 > 1/2 bất kì ta có x1 + x2 > 1 , suy ra x1 + x2 - 1 > 0
Suy ra
Hay hay hàm số đồng biến với x > 1/2 .
Bài 9: Chứng minh hàm số đồng biến với x > 2.
Hướng dẫn giải:
Điều kiện xác định: x ≠ 2 .
Lấy x1; x2 > 2. Ta có:
Với x1;x2 > 2 ta có: 2 - x1 < 0 ; 2 - x2 < 0
Do đó
Vậy hàm số đồng biến với x > 2.
Bài 10: Tìm điều kiện của a để hàm số y = ax + 3 nghịch biến trên toàn tập số thực.
Hướng dẫn giải:
Xét hàm số y = f(x) = ax + 3.
Lấy x1 ; x2 ∈ R bất kì.
Ta có :
Để hàm số nghịch biến trên R thì hay a < 0.
Từ khóa » Hàm Số Bậc 2 đồng Biến Nghịch Biến Lớp 9
-
Xét Tính đồng Biến, Nghịch Biến Của Hàm Số Cực Hay, Có đáp án
-
Lý Thuyết Hàm Số Y = Ax^2 (a ≠ 0) | SGK Toán Lớp 9
-
Hàm Số Bậc Hai Một ẩn Và đồ Thị Hàm Số Y=ax^2 - Toán 9
-
Hàm Số Bậc 2 đồng Biến, Nghịch Biến Lớp 9
-
Kiến Thức Hàm Số đồng Biến Nghịch Biến Lớp 9 | Bán Máy Nước Nóng
-
Cách Xác định Hàm Số Bậc Nhất: Tập Xác định, đồng Biến, Nghịch Biến
-
Lý Thuyết Hàm Số Bậc Hai Một ẩn Và đồ Thị Hàm Số Y=ax^2 Toán 9
-
Hàm Số đồng Biến Trên R Lớp 9 | Dương Lê
-
Toán 9 – Tìm Tham Số M để Hàm Số Bậc Nhất Là Hàm Số đồng Biến ...
-
Bài 2. Hàm Số Bậc Nhất
-
TÌM M ĐỂ HAM SỐ BẬC HAI Y=ax^2 ĐỒNG BIẾN ... - YouTube
-
Bài 4: Tính Chất đồng Biến, Nghịch Biến Của Hàm Số Y = Ax + B
-
Tìm điều Kiện để Hàm Số Là Hàm Bậc Nhất, Hàm Số đồng Biến, Nghịch ...