Xét Tính đồng Biến, Nghịch Biến Của Hàm Số - Toán Lớp 9 - Haylamdo

Xét tính đồng biến, nghịch biến của hàm số - Toán lớp 9 ❮ Bài trước Bài sau ❯

Xét tính đồng biến, nghịch biến của hàm số

Với Xét tính đồng biến, nghịch biến của hàm số Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Xét tính đồng biến, nghịch biến của hàm số từ đó đạt điểm cao trong bài thi môn Toán lớp 9.

Xét tính đồng biến, nghịch biến của hàm số

Phương pháp giải

+ Hàm số y = f(x) đồng biến nếu với mọi x1; x2 thuộc tập xác định thỏa mãn x1 < x2 thì f(x1) < f(x2)

+ Hàm số y = f(x) nghịch biến nếu với mọi x1; x2 thuộc tập xác định thỏa mãn x1 < x2 thì f(x1) > f(x2)

+ Ngoài dựa vào định nghĩa, ta có thể dựa vào việc xét dấu biểu thức A = (f(x1)- f(x2))(x1 - x2) hoặc Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết .

Nếu A > 0 (hoặc B > 0 ) thì hàm số đồng biến.

Nếu A < 0 (hoặc B < 0) thì hàm số nghịch biến.

Ví dụ minh họa

Ví dụ 1: Xét tính đồng biến, nghịch biến của các hàm số:

a) y = f(x) = 3x-7 .

b) y = g(x) = -2x+5 .

c) y = h(x) = √(x+2)

Hướng dẫn giải:

a) Lấy x1 ≠ x2 ∈ R, ta có:

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiếtVậy hàm số đồng biến trên toàn tập số thực.

b) Lấy x1 ≠ x2 ∈ R, ta có:

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiếtVậy hàm số y = g(x) nghịch biến trên toàn tập số thực.

c) Đkxđ : x ≥ -2.

Lấy x1 ≠ x2 thỏa mãn x1; x2 ≥ -2 ta có:

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Vậy hàm số đồng biến trên tập xác định x ≥ -2.

Ví dụ 2: Chứng minh rằng :

a) f(x) = x2 + 2x + 4 đồng biến khi x > -1 và nghịch biến khi x < -1.

b) g(x) = -x2 + 4x + 1 đồng biến khi x < 2 và nghich biến khi x > 2.

Hướng dẫn giải:

a) Lấy x1 ; x2 ∈ R ta có :

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

+ Với mọi x1 < -1 ; x2 < -1 thì x1 + x2 + 2 < 0

Vậy hàm số f(x) = x2 + 2x + 4 nghịch biến với mọi x < -1.

+ Với mọi x1 > -1 ; x2 > -1 thì x1 + x2 + 2 > 0

Vậy hàm số f(x) = x2 + 2x + 4 đồng biến với mọi x > -1.

b) Lấy x1 ; x2 ∈ R, xét :

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

+ Với mọi x1 < 2 ; x2 < 2thì x1 + x2 < 4.

Do đó Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Vậy hàm số f(x) = x2 + 2x + 4 nghịch biến với mọi x < -1.

+ Với mọi x1 > -1 ; x2 > -1 thì x1 + x2 + 2 > 0

Vậy hàm số f(x) = x2 + 2x + 4 đồng biến với mọi x > -1.

Ví dụ 3: Chứng minh rằng hàm số Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết nghịch biến trên tập xác định của nó.

Hướng dẫn giải:

Đkxđ : x ≤ 1.

Ta có:

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Lấy x1; x2 < 1 ta có:

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Suy ra hàm số y = f(x) nghịch biến trên tập xác định của nó.

Hay lắm đó

Bài tập trắc nghiệm tự luyện

Bài 1: Với x1; x2 thuộc tập D bất kì, hàm số y = f(x) được gọi là đồng biến trên tập D khi :

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Lời giải:

Đáp án: D

Bài 2: Với x1; x2 thuộc tập D bất kì, hàm số y = f(x) được gọi là nghịch biến trên tập D khi :

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Lời giải:

Đáp án: C

Bài 3: Cho hàm số y = 1 – x . Khẳng định nào sau đây là đúng ?

A. Hàm số có tập xác định x < 1.

B. Hàm số có tập xác định x > 1.

C. Hàm số đồng biến trên tập xác định

D. Hàm số nghịch biến trên tập xác định.

Lời giải:

Đáp án: D

Bài 4: Cho hàm số y = x2 - 6x . Hàm số đồng biến khi :

A. 0 < x < 5 B. x < 3 C. x > 3 D. -2 <x < 2.

Lời giải:

Đáp án: C

Bài 5: Hàm số nào dưới đây nghịch biến trên toàn tập số thực:

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Lời giải:

Đáp án: A

Bài tập tự luận tự luyện

Bài 6: Chứng minh rằng hàm số Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết đồng biến trên tập số thực.

Hướng dẫn giải:

Xét hàm số Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Lấy x1; x2 ∈ R bất kì, ta có:

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Vậy hàm số đồng biến trên tập số thực.

Hay lắm đó

Bài 7: Xét tính đồng biến, nghịch biến của hàm số Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết với x < 1.

Hướng dẫn giải:

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Đkxđ: x ≤ 3/2 .

Lấy x1; x2 < 1 bất kì ta có:

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Vậy hàm số nghịch biến với mọi x < 1.

Bài 8: Cho hàm số y = x2 - x + 1.

Chứng minh hàm số đồng biến khi x > 1/2 và nghịch biến khi x < 1/2.

Hướng dẫn giải:

f(x) = x2 - x + 1

+ Lấy x1; x2 < 1/2 bất kì ta có:

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Với x1; x2 < 1/2 thì x1 + x2 < 1 nên x1 + x2 - 1 < 0 .

Hay Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết hay hàm số nghịch biến với x < 1/2 .

+ Lấy x1; x2 > 1/2 bất kì ta có x1 + x2 > 1 , suy ra x1 + x2 - 1 > 0

Suy ra Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Hay Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết hay hàm số đồng biến với x > 1/2 .

Bài 9: Chứng minh hàm số Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết đồng biến với x > 2.

Hướng dẫn giải:

Điều kiện xác định: x ≠ 2 .

Lấy x1; x2 > 2. Ta có:

Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Với x1;x2 > 2 ta có: 2 - x1 < 0 ; 2 - x2 < 0

Do đó Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Vậy hàm số đồng biến với x > 2.

Bài 10: Tìm điều kiện của a để hàm số y = ax + 3 nghịch biến trên toàn tập số thực.

Hướng dẫn giải:

Xét hàm số y = f(x) = ax + 3.

Lấy x1 ; x2 ∈ R bất kì.

Ta có : Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết

Để hàm số nghịch biến trên R thì Xét tính đồng biến, nghịch biến của hàm số | Bài tập Toán 9 chọn lọc có giải chi tiết hay a < 0.

Từ khóa » Hàm Số Bậc 2 đồng Biến Nghịch Biến Lớp 9