1,2-Ethanediol - The NIST WebBook

1,2-Ethanediol
  • Formula: C2H6O2
  • Molecular weight: 62.0678
  • IUPAC Standard InChI: InChI=1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2 Copy InChI version 1.06
  • IUPAC Standard InChIKey: LYCAIKOWRPUZTN-UHFFFAOYSA-N Copy
  • CAS Registry Number: 107-21-1
  • Chemical structure: C2H6O2 This structure is also available as a 2d Mol file or as a computed 3d SD file The 3d structure may be viewed using Java or Javascript.
  • Species with the same structure:
    • Pluronic f-68
  • Other names: Ethylene glycol; Ethylene alcohol; Glycol; Glycol alcohol; Lutrol 9; Macrogol 400 BPC; Monoethylene glycol; Ramp; Tescol; 1,2-Dihydroxyethane; 2-Hydroxyethanol; HOCH2CH2OH; Aethylenglykol; Ethane-1,2-diol; Fridex; MEG 100; 1,2-Ethandiol; Ucar 17; Dowtherm SR 1; Norkool; Zerex; Ilexan E; 1,2-Ethylene glycol; 146AR; Ethylene dihydrate; NSC 93876; Union Carbide XL 54 Type I De-icing Fluid; Dihydroxyethane; Ethanediol; Ethylene gycol; Glygen; Athylenglykol; M.e.g.; Aliphatic diol
  • Information on this page:
    • Gas phase thermochemistry data
    • Condensed phase thermochemistry data
    • Phase change data
    • Reaction thermochemistry data
    • Henry's Law data
    • Gas phase ion energetics data
    • Ion clustering data
    • IR Spectrum
    • Mass spectrum (electron ionization)
    • References
    • Notes
  • Other data available:
    • Gas Chromatography
  • Data at other public NIST sites:
    • Computational Chemistry Comparison and Benchmark Database
    • Gas Phase Kinetics Database
  • Options:
    • Switch to calorie-based units

Data at NIST subscription sites:

  • NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
  • NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.

Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments: ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein DRB - Donald R. Burgess, Jr. GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
ΔfH°gas-394.4 ± 2.8kJ/molCcrKnauth and Sabbah, 1990see Knauth and Sabbah, 1989; ALS
ΔfH°gas-388. ± 2.kJ/molCcbGardner and Hussain, 1972ALS
ΔfH°gas-390.3kJ/molN/AMcClaine, 1947Value computed using ΔfHliquid° value of -455.9 kj/mol from McClaine, 1947 and ΔvapH° value of 65.6 kj/mol from Knauth and Sabbah, 1990.; DRB
ΔfH°gas-389.3kJ/molN/AParks, West, et al., 1946Value computed using ΔfHliquid° value of -454.9±0.3 kj/mol from Parks, West, et al., 1946 and ΔvapH° value of 65.6 kj/mol from Knauth and Sabbah, 1990.; DRB
ΔfH°gas-387.5kJ/molN/AMoureu and Dode, 1937Value computed using ΔfHliquid° value of -453.1±1.2 kj/mol from Moureu and Dode, 1937 and ΔvapH° value of 65.6 kj/mol from Knauth and Sabbah, 1990.; DRB
Quantity Value Units Method Reference Comment
S°gas311.84J/mol*KN/AChao J., 1986Other third-law entropy values at 298.15 K known from literature are 284.5 [ Buckley P., 1967], 312.5 [ Stull D.R., 1969], and 315.47(5.36) J/mol*K [ Yeh T.-S., 1994].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
59.79200.Yeh T.-S., 1994Other statistically calculated values of entropy at 298.15 K (274.76 [ Buckley P., 1967], 293.76 [ Frei H., 1977], 303.8 [ Chao J., 1986], and 323.55 J/mol*K [ Dyatkina M.E., 1954]) are in worse agreement with third-law entropy value.; GT
77.99298.15
78.41300.
97.99400.
113.64500.
125.65600.
135.23700.
143.26800.
150.25900.
156.401000.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments: ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
ΔfH°liquid-460.0 ± 2.8kJ/molCcrKnauth and Sabbah, 1990see Knauth and Sabbah, 1989; ALS
ΔfH°liquid-455.6 ± 0.8kJ/molCcbGardner and Hussain, 1972ALS
ΔfH°liquid-455.85kJ/molCcbMcClaine, 1947ALS
ΔfH°liquid-454.9 ± 0.3kJ/molCcbParks, West, et al., 1946ALS
ΔfH°liquid-453.1 ± 1.2kJ/molCcbMoureu and Dode, 1937Reanalyzed by Cox and Pilcher, 1970, Original value = -452.3 kJ/mol; ALS
Quantity Value Units Method Reference Comment
ΔcH°liquid-1191. ± 10.kJ/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
S°liquid166.9J/mol*KN/AParks, Kelley, et al., 1929Extrapolation below 90 K, 8.2 cal/mol*K. Revision of previous data.; DH
S°liquid179.5J/mol*KN/AParks and Kelley, 1925Extrapolation below 90 K, 11.46 cal/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
149.8298.Zaripov, 1982T = 298, 323, 363 K.; DH
149.3298.Stephens and Tamplin, 1979T = 273 to 493 K.; DH
149.6298.15Murthy and Subrahmanyam, 1977DH
145.2303.Kawaizumi, Otake, et al., 1972DH
150.6301.2Paz Andrade, Paz, et al., 1970T = 28, 40°C.; DH
150.33298.15Nikolaev and Rabinovich, 1967T = 80 to 300 K.; DH
147.3298.Tungusov and Mishchenko, 1965DH
148.87298.Rabinovich and Nikolaev, 1962T = 10 to 55°C.; DH
145.6293.4Neiman and Kurlyankin, 1932T = 20.2 to 78.4°C. Value is unsmoothed experimental datum.; DH
149.4293.0Parks and Kelley, 1925T = 88 to 293 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments: BS - Robert L. Brown and Stephen E. Stein TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director AC - William E. Acree, Jr., James S. Chickos DRB - Donald R. Burgess, Jr. ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil470.5 ± 0.5KAVGN/AAverage of 27 out of 31 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus261. ± 2.KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple256.6KN/AKnauth and Sabbah, 1990, 2Uncertainty assigned by TRC = 0.2 K; TRC
Ttriple260.6KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.2 K; TRC
Ttriple260.6KN/ANikolaev and Rabinovich, 1967, 2Uncertainty assigned by TRC = 0.2 K; TRC
Ttriple260.8KN/AParks and Kelley, 1925, 2Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Tc720.KN/ANikitin, Pavlov, et al., 1993Uncertainty assigned by TRC = 4. K; TRC
Tc720.KN/ATeja and Rosenthal, 1991Uncertainty assigned by TRC = 1. K; TRC
Tc718.KN/ATeja and Anselme, 1990Uncertainty assigned by TRC = 1. K; TRC
Tc645.KN/AStephens and Tamplin, 1979, 2Uncertainty assigned by TRC = 30. K; TC data from Union Carbide Corp.; TRC
Tc790.KN/AArtemchenko, 1972Uncertainty assigned by TRC = 30. K; TRC
Quantity Value Units Method Reference Comment
Pc82.00barN/ANikitin, Pavlov, et al., 1993Uncertainty assigned by TRC = 2.00 bar; TRC
Pc90.00barN/ATeja and Rosenthal, 1991Uncertainty assigned by TRC = 1.00 bar; TRC
Pc131.00barN/ALyons, 1985Uncertainty assigned by TRC = 10.00 bar; TRC
Quantity Value Units Method Reference Comment
ΔvapH°65. ± 3.kJ/molAVGN/AAverage of 13 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
62.4 ± 4.0345.N/APetitjean, Reyes-Perez, et al., 2010Based on data from 307. to 384. K.; AC
57.4385.TGAAl-Najjar and Al-Sammerrai, 2007Based on data from 363. to 408. K.; AC
65.2338.AStephenson and Malanowski, 1987Based on data from 323. to 473. K.; AC
62.5378.AStephenson and Malanowski, 1987Based on data from 363. to 418. K.; AC
68. ± 2.409.VGardner and Hussain, 1972ALS
64.0338.N/AJones and Tamplin, 1952Based on data from 323. to 473. K. See also Gardner and Hussain, 1972.; AC
61.9 ± 6.3273.VGallaugher and Hibbert, 1937Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 57.07 kJ/mol; ALS
61.1383.N/ASchierholtz and Staples, 1935Based on data from 363. to 403. K.; AC
57.3436.N/ASchierholtz and Staples, 1935Based on data from 403. to 470. K.; AC
61.1410.N/Ade Forcrand, 1901Based on data from 395. to 459. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C)) P = vapor pressure (bar) T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
323. to 473.4.970121914.951-84.996Jones and Tamplin, 1952, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
9.958260.6Nikolaev and Rabinovich, 1967DH
11.623260.8Parks and Kelley, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
38.21260.6Nikolaev and Rabinovich, 1967DH
44.57260.8Parks and Kelley, 1925DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:

  • SRD 103a – Thermo Data Engine (TDE) for pure compounds.
  • SRD 103b – Thermo Data Engine (TDE) for pure compounds, binary mixtures and chemical reactions
  • SRSD 2 – Web Thermo Tables (WTT), "lite" edition
  • SRSD 3 – Web Thermo Tables (WTT), professional edition
  • SRD 147 – Ionic Liquids Database
  • SRD 156 – Clathrate Hydrate Physical Property Database

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments: B - John E. Bartmess ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

(Chlorine anion1,2-Ethanediol) + 1,2-Ethanediol = (Chlorine anion21,2-Ethanediol)

By formula: (Cl-C2H6O2) + C2H6O2 = (Cl-2C2H6O2)

Quantity Value Units Method Reference Comment
ΔrH°66.5 ± 5.0kJ/molTDAsZhang, Beglinger, et al., 1995gas phase; B
Quantity Value Units Method Reference Comment
ΔrG°39. ± 4.2kJ/molTDAsZhang, Beglinger, et al., 1995gas phase; B

Chlorine anion + 1,2-Ethanediol = (Chlorine anion1,2-Ethanediol)

By formula: Cl- + C2H6O2 = (Cl-C2H6O2)

Quantity Value Units Method Reference Comment
ΔrH°106. ± 4.2kJ/molTDAsZhang, Beglinger, et al., 1995gas phase; B
Quantity Value Units Method Reference Comment
ΔrG°69.5 ± 4.2kJ/molTDAsZhang, Beglinger, et al., 1995gas phase; B

C2H5O2- + Hydrogen cation = 1,2-Ethanediol

By formula: C2H5O2- + H+ = C2H6O2

Quantity Value Units Method Reference Comment
ΔrH°1528. ± 10.kJ/molG+TSCrowder and Bartmess, 1993gas phase; B
Quantity Value Units Method Reference Comment
ΔrG°1510. ± 8.4kJ/molIMRECrowder and Bartmess, 1993gas phase; B

1,2-Ethanediol + Acetone = 1,3-Dioxolane, 2,2-dimethyl- + Water

By formula: C2H6O2 + C3H6O = C5H10O2 + H2O

Quantity Value Units Method Reference Comment
ΔrH°-10.kJ/molEqkAnteunis and Rommelaere, 1970liquid phase; ALS

1,2-Ethanediol + Nitric acid = 2-hydroxyethyl nitrate + Water

By formula: C2H6O2 + HNO3 = C2H5NO4 + H2O

Quantity Value Units Method Reference Comment
ΔrH°-7.9kJ/molCmTsvetkov, Sopin, et al., 1986liquid phase; ALS

Nitric oxide anion + 1,2-Ethanediol = C2H6NO3-

By formula: NO- + C2H6O2 = C2H6NO3-

Quantity Value Units Method Reference Comment
ΔrH°113.0kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K))) k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar)) d(ln(kH))/d(1/T) = Temperature dependence constant (K)

k°H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
4.0×10+6MN/AValue at T = 293. K.
17000.MN/A missing citation say that this value is unreliable.

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments: HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments: B - John E. Bartmess LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi

View reactions leading to C2H6O2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
Proton affinity (review)815.9kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity773.6kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
10.16EIHolmes and Lossing, 1982LBLHLM
10.55PEOhno, Imai, et al., 1985Vertical value; LBLHLM
10.55PEKimura, Katsumata, et al., 1981Vertical value; LLK
10.5PEVon Niessen, Bieri, et al., 1980Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3O+11.12 ± 0.05CH2OHEIHolmes and Lossing, 1984LBLHLM
CH3O+12.5 ± 0.15CH2O+HEIHolmes, Lossing, et al., 1983LBLHLM
CH4O+[CH2OH2+]11.42 ± 0.05CH2OEIHolmes, Lossing, et al., 1982LBLHLM
CH5O+[CH3OH2+]10.7 ± 0.1CHOEIBurgers, Holmes, et al., 1987LBLHLM

De-protonation reactions

C2H5O2- + Hydrogen cation = 1,2-Ethanediol

By formula: C2H5O2- + H+ = C2H6O2

Quantity Value Units Method Reference Comment
ΔrH°1528. ± 10.kJ/molG+TSCrowder and Bartmess, 1993gas phase; B
Quantity Value Units Method Reference Comment
ΔrG°1510. ± 8.4kJ/molIMRECrowder and Bartmess, 1993gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Chlorine anion + 1,2-Ethanediol = (Chlorine anion1,2-Ethanediol)

By formula: Cl- + C2H6O2 = (Cl-C2H6O2)

Quantity Value Units Method Reference Comment
ΔrH°106. ± 4.2kJ/molTDAsZhang, Beglinger, et al., 1995gas phase
Quantity Value Units Method Reference Comment
ΔrG°69.5 ± 4.2kJ/molTDAsZhang, Beglinger, et al., 1995gas phase

(Chlorine anion1,2-Ethanediol) + 1,2-Ethanediol = (Chlorine anion21,2-Ethanediol)

By formula: (Cl-C2H6O2) + C2H6O2 = (Cl-2C2H6O2)

Quantity Value Units Method Reference Comment
ΔrH°66.5 ± 5.0kJ/molTDAsZhang, Beglinger, et al., 1995gas phase
Quantity Value Units Method Reference Comment
ΔrG°39. ± 4.2kJ/molTDAsZhang, Beglinger, et al., 1995gas phase

Nitric oxide anion + 1,2-Ethanediol = C2H6NO3-

By formula: NO- + C2H6O2 = C2H6NO3-

Quantity Value Units Method Reference Comment
ΔrH°113.0kJ/molN/AHendricks, de Clercq, et al., 2002gas phase

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

  • LIQUID (NEAT); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

  • gas

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom
  • Plot
  • Help / Software credits

Help

The interactive spectrum display requires a browser with JavaScript and HTML 5 canvas support.

Select a region with data to zoom. Select a region with no data or click the mouse on the plot to revert to the orginal display.

Credits

The following components were used in generating the plot:

  • jQuery
  • jQuery UI
  • Flot
  • Plugins for Flot:
    • Resize (distributed with Flot)
    • Selection (distributed with Flot)
    • Axis labels
    • Labels ( Modified by NIST for use in this application)

Additonal code used was developed at NIST: jcamp-dx.js and jcamp-plot.js.

Use or mention of technologies or programs in this web site is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that these items are necessarily the best available for the purpose.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center
NIST MS number 341866

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Knauth and Sabbah, 1990 Knauth, P.; Sabbah, R., Energetics of intra- and intermolecular bonds in ω-alkanediols (II) Thermochemical study of 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol at 298.15K, Struct. Chem., 1990, 1, 43-46. [all data]

Knauth and Sabbah, 1989 Knauth, P.; Sabbah, R., Combustion calorimetry on milligram samples of liquid substances with a CRMT rocking bomb calorimeter. Application to the study of ω-alkanediol at 298.15 K, J. Chem. Thermodyn., 1989, 21, 203-210. [all data]

Gardner and Hussain, 1972 Gardner, P.J.; Hussain, K.S., The standard enthalpies of formation of some aliphatic diols, J. Chem. Thermodyn., 1972, 4, 819-827. [all data]

McClaine, 1947 McClaine, L.A., Thermodynamic data for some compounds containing carbon, hydrogen and oxygen, Ph.D. Thesis for Stanford University, 1947, 1-57. [all data]

Parks, West, et al., 1946 Parks, G.S.; West, T.J.; Naylor, B.F.; Fujii, P.S.; McClaine, L.A., Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols, J. Am. Chem. Soc., 1946, 68, 2524-2527. [all data]

Moureu and Dode, 1937 Moureu, H.; Dode, M., Chaleurs de formation de l'oxyde d'ethylene, de l'ethanediol et de quelques homologues, Bull. Soc. Chim. France, 1937, 4, 637-647. [all data]

Chao J., 1986 Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Buckley P., 1967 Buckley P., Infrared studies on rotational isomerism. I. Ethylene glycol, Can. J. Chem., 1967, 45, 397-407. [all data]

Stull D.R., 1969 Stull D.R., Jr., The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]

Yeh T.-S., 1994 Yeh T.-S., Global conformational analysis of 1,2-ethanediol, J. Phys. Chem., 1994, 98, 8921-8929. [all data]

Frei H., 1977 Frei H., Ethylene glycol: infrared spectra, ab initio calculation, vibrational analysis and conformations of 5 matrix isolated isotopic modifications, Chem. Phys., 1977, 25, 271-298. [all data]

Dyatkina M.E., 1954 Dyatkina M.E., Thermodynamic functions of normal alcohols (propanol, butanol, ethylene glycol), Zh. Fiz. Khim., 1954, 28, 377. [all data]

Cox and Pilcher, 1970 Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Parks, Kelley, et al., 1929 Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Parks and Kelley, 1925 Parks, G.S.; Kelley, K.K., Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds, J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]

Zaripov, 1982 Zaripov, Z.I., Experimental study of the isobaric heat capacity of liquid organic compounds with molecular weights of up to 4000 a.e.m., 1982, Teplomassoobmen Teplofiz. [all data]

Stephens and Tamplin, 1979 Stephens, M.A.; Tamplin, W.S., Saturated liquid specific heats of ethylene glycol homologues, J. Chem. Eng. Data, 1979, 24, 81-82. [all data]

Murthy and Subrahmanyam, 1977 Murthy, N.M.; Subrahmanyam, S.V., Behaviour of excess heat capacity of aqueous non-electrolytes, Indian J. Pure Appl. Phys., 1977, 15, 485-489. [all data]

Kawaizumi, Otake, et al., 1972 Kawaizumi, F.; Otake, T.; Nomura, H.; Miyahara, Y., Heat capacities of aqueous solutions of ethylene glycol, propylene glycol and 1,3-butanediol, Nippon Kagaku. Kaishi, 1972, 1972, 1733-1776. [all data]

Paz Andrade, Paz, et al., 1970 Paz Andrade, M.I.; Paz, J.M.; Recacho, E., Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos, An. Quim., 1970, 66, 961-967. [all data]

Nikolaev and Rabinovich, 1967 Nikolaev, P.N.; Rabinovich, I.B., Heat capacity of ethylene glycol and ethylene deuteroglycol in the temperature range 80-300K, Zhur. Fiz. Khim., 1967, 41, 2191-2194. [all data]

Tungusov and Mishchenko, 1965 Tungusov, V.P.; Mishchenko, K.P., Specific heat of pure ethylene glycol and solution of NaI and KI in ethylene glycol at 25°C, Zhur. Fiz. Khim., 1965, 39, 2968-2972. [all data]

Rabinovich and Nikolaev, 1962 Rabinovich, I.B.; Nikolaev, P.N., Isotopic effect in the specific heat of some deutero compounds, Dokl. Akad. Nauk, 1962, SSSR 142, 1335-1338. [all data]

Neiman and Kurlyankin, 1932 Neiman, M.B.; Kurlyankin, I.A., Thermodynamic studies of solutions. II. Study of the thermodynamics of aqueous solutions of ethylene glycol at different temperatures, Zhur. Obshch. Khim., 1932, 2, 318-321. [all data]

Knauth and Sabbah, 1990, 2 Knauth, P.; Sabbah, R., Can. J. Chem., 1990, 68, 731. [all data]

Wilhoit, Chao, et al., 1985 Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Nikolaev and Rabinovich, 1967, 2 Nikolaev, P.N.; Rabinovich, I.B., Zh. Fiz. Khim., 1967, 41, 9, 2191. [all data]

Parks and Kelley, 1925, 2 Parks, G.S.; Kelley, K.K., Thermal Data on Organic Compounds II. The Heat Capacities of Five Organic Compounds. The Entropies and Free Energies of Some Homologous Series of Aliphatic Compounds, J. Am. Chem. Soc., 1925, 47, 2089-97. [all data]

Nikitin, Pavlov, et al., 1993 Nikitin, E.D.; Pavlov, P.A.; Skripov, P.V., Measurement of the critical properties of thermally unstable substances and mixtures by the pulse-heating method, J. Chem. Thermodyn., 1993, 25, 869-80. [all data]

Teja and Rosenthal, 1991 Teja, A.S.; Rosenthal, D.J., The critical pressures and temperatures of ten substances using a low residence time flow apparatus in Experimental Results for Phase Equilibria and Pure Component Properties, DIPPR DATA Series No. 1, 1991. [all data]

Teja and Anselme, 1990 Teja, A.S.; Anselme, M.J., The critical properties of thermally stable and unstable fluids. I. 1985 results, AIChE Symp. Ser., 1990, 86, 279, 115-21. [all data]

Stephens and Tamplin, 1979, 2 Stephens, M.A.; Tamplin, W.S., Saturated Liquid SPecific Heats of Ethylene GLycol Homologues, J. Chem. Eng. Data, 1979, 24, 81-2. [all data]

Artemchenko, 1972 Artemchenko, A.I., Fiz. Khim. Rastvorov, 1972, 1972, 128-34. [all data]

Lyons, 1985 Lyons, R.L., The determination of critical properties and vapor pressure of thermally stable and unstable compounds, M. S. Thesis, 1985. [all data]

Petitjean, Reyes-Perez, et al., 2010 Petitjean, M.; Reyes-Perez, E.; Perez, D.; Mirabel, Ph.; Le Calve, S., Vapor Pressure Measurements of Hydroxyacetaldehyde and Hydroxyacetone in the Temperature Range (273 to 356) K, J. Chem. Eng. Data, 2010, 55, 2, 852-855, https://doi.org/10.1021/je9004905 . [all data]

Al-Najjar and Al-Sammerrai, 2007 Al-Najjar, Hazim; Al-Sammerrai, Dhoaib, Thermogravimetric determination of the heat of vaporization of some highly polar solvents, J. Chem. Technol. Biotechnol., 2007, 37, 3, 145-152, https://doi.org/10.1002/jctb.280370302 . [all data]

Stephenson and Malanowski, 1987 Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Jones and Tamplin, 1952 Jones, W.S.; Tamplin, W.S., Chapter 9. Physical Properties of Propylene Glycol in Glycols. American Chemical Society Monograph 114, G.O. Curme, Jr., ed(s)., Reinhold, New York, 1952, 210-240. [all data]

Gallaugher and Hibbert, 1937 Gallaugher, A.F.; Hibbert, H., Studies on reactions relating to carbohydrates and polysaccharides. LV. Vapor pressures of the polyethylene glycols and their derivatives, J. Am. Chem. Soc., 1937, 59, 2521-2525. [all data]

Pedley, Naylor, et al., 1986 Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Schierholtz and Staples, 1935 Schierholtz, O.J.; Staples, M.L., Vapor Pressures of Certain Glycols, J. Am. Chem. Soc., 1935, 57, 12, 2709-2711, https://doi.org/10.1021/ja01315a106 . [all data]

de Forcrand, 1901 de Forcrand, M., Compt. Rend., 1901, 132, 688. [all data]

Jones and Tamplin, 1952, 2 Jones, W.S.; Tamplin, W.S., Chapter 3. Physical Properties of Ethylene Glycol in Glycols, George O. Curme, Jr., ed(s)., Reinhold Publishing Corporation, 330 West Forty-Second Street, New York, U.S.A., 1952, 27-62. [all data]

Zhang, Beglinger, et al., 1995 Zhang, W.; Beglinger, C.; Stone, J.A., High-pressure mass spectrometric study of the gas-phase association of Cl- with alpha,omega-diols, J. Phys. Chem., 1995, 99, 30, 11673, https://doi.org/10.1021/j100030a009 . [all data]

Crowder and Bartmess, 1993 Crowder, C.; Bartmess, J., The Gas Phase Acidities of Diols, J. Am. Soc. Mass Spectrom., 1993, 4, 9, 723, https://doi.org/10.1016/1044-0305(93)80051-Y . [all data]

Anteunis and Rommelaere, 1970 Anteunis, M.; Rommelaere, Y., NMR experiments on acetals. XXIX. The ease of acetonide formation of some glycols, Bull. Soc. Chim. Belg., 1970, 79, 523-530. [all data]

Tsvetkov, Sopin, et al., 1986 Tsvetkov, V.G.; Sopin, V.P.; Tsvetkova, L.Ya.; Marchenko, G.N., Enthalpy of reaction of nitric acid with some organic compounds, J. Gen. Chem. USSR, 1986, 56, 471-474. [all data]

Hendricks, de Clercq, et al., 2002 Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Hunter and Lias, 1998 Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Holmes and Lossing, 1982 Holmes, J.L.; Lossing, F.P., Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part II. The effect of substitution at charge-bearing sites, Can. J. Chem., 1982, 60, 2365. [all data]

Ohno, Imai, et al., 1985 Ohno, K.; Imai, K.; Harada, Y., Variations in reactivity of lone-pair electrons due to intramolecular hydrogen bonding as observed by penning ionization electron spectroscopy, J. Am. Chem. Soc., 1985, 107, 8078. [all data]

Kimura, Katsumata, et al., 1981 Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Von Niessen, Bieri, et al., 1980 Von Niessen, W.; Bieri, G.; Asbrink, L., 30.4 nm He(II) photoelectron spectra of organic molecules. Part III. Oxo-compounds (C,H,O), J. Electron Spectrosc. Relat. Phenom., 1980, 21, 175. [all data]

Holmes and Lossing, 1984 Holmes, J.L.; Lossing, F.P., Heats of formation of organic radicals from appearance energies, Int. J. Mass Spectrom. Ion Processes, 1984, 58, 113. [all data]

Holmes, Lossing, et al., 1983 Holmes, J.L.; Lossing, F.P.; Terlouw, J.K.; Burgers, P.C., Novel gas-phase ions. The radical cations [CH2XH]+. (X = F, Cl, Br, I, OH, NH2, SH) and [CH2CH2NH3]+., Can. J. Chem., 1983, 61, 2305. [all data]

Holmes, Lossing, et al., 1982 Holmes, J.L.; Lossing, F.P.; Terlouw, J.K.; Burgers, P.C., The radical cation [CH2OH2]+ and related stable gas phase ion-dipole complexes, J. Am. Chem. Soc., 1982, 104, 2931. [all data]

Burgers, Holmes, et al., 1987 Burgers, P.C.; Holmes, J.L.; Hop, C.E.C.A.; Postma, R.; Ruttink, P.J.A.; Terlouw, J.K., The isomeric [C2H6O2]+ hydrogen-bridged radical cations [CH2-O(H)...H...O=CH2]+, [CH3-O...H...O=CH2]+, and [CH3-O(H)...H...O=CH]+: Theory and experiment, J. Am. Chem. Soc., 1987, 109, 7315. [all data]

Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References

  • Symbols used in this document:
    AE Appearance energy
    Cp,gas Constant pressure heat capacity of gas
    Cp,liquid Constant pressure heat capacity of liquid
    Pc Critical pressure
    S°gas Entropy of gas at standard conditions
    S°liquid Entropy of liquid at standard conditions
    Tboil Boiling point
    Tc Critical temperature
    Tfus Fusion (melting) point
    Ttriple Triple point temperature
    d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant
    k°H Henry's Law constant at 298.15K
    ΔcH°liquid Enthalpy of combustion of liquid at standard conditions
    ΔfH°gas Enthalpy of formation of gas at standard conditions
    ΔfH°liquid Enthalpy of formation of liquid at standard conditions
    ΔfusH Enthalpy of fusion
    ΔfusS Entropy of fusion
    ΔrG° Free energy of reaction at standard conditions
    ΔrH° Enthalpy of reaction at standard conditions
    ΔvapH Enthalpy of vaporization
    ΔvapH° Enthalpy of vaporization at standard conditions
  • Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
  • The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
  • Customer support for NIST Standard Reference Data products.

Từ khóa » C2h6o2=c2h4