Bài 4. Hàm Số Mũ, Hàm Số Lôgarit - Củng Cố Kiến Thức
Có thể bạn quan tâm
- Hàm Số Y Bằng Ax Bình Cộng Bx Cộng C
- Hàm Số Y Bằng Ax Bình Cộng Bx Cộng C Bằng 0 đồng Biến Trong Khoảng Nào Sau đây
- Hàm Số Y Bằng Ax Bình Cộng Bx Cộng C Có đồ Thị Như Hình Bên Dưới Khẳng định Nào Sau đây đúng
- Hàm Số Y Bằng Ax Bình Cộng Bx Cộng C đồng Biến Khi Nào
- Hàm Số Y Bằng Ax Bình Cộng Bx Cộng C đồng Biến Trên Khoảng Nào
I. Hàm số mũ
Cho số thực dương a khác 1. Hàm số $y = {a^x}$ được gọi là hàm số mũ cơ số a.
* Đạo hàm của hàm số mũ
Định lí 1:
Hàm số $y = {e^x}$ có đạo hàm tại mọi x và $\left( {{e^x}} \right)' = {e^x}$.
Định lí 2:
Hàm số $y = {a^x}\left( {a > 0,a \ne 1} \right)$ có đạo hàm tại mọi x và $\left( {{a^x}} \right)' = {a^x}\ln a$.
* Khảo sát hàm số mũ $y = {a^x}\left( {a > 0,a \ne 1} \right)$
1. $y = {a^x},a > 1$
- Tập xác định: $R$
- Sự biến thiên: $y = {a^x}\ln a > 0,\forall x$
Giới hạn đặc biệt: $\mathop {\lim }\limits_{x \to - \infty } {a^x} = 0,\mathop {\lim }\limits_{x \to + \infty } {a^x} = + \infty $
Tiệm cận:
Trục Ox là tiệm cận ngang.
- Bảng biến thiên:
- Đồ thị (Hình 06)
Hình 06
2. $y = {a^x},0 < a < 1$
- Tập xác định: $R$
- Sự biến thiên: $y = {a^x}\ln a < 0,\forall x$
Giới hạn đặc biệt:
$\mathop {\lim }\limits_{x \to - \infty } {a^x} = + \infty ,\mathop {\lim }\limits_{x \to + \infty } {a^x} = 0$
Tiệm cận:
Trục Ox là tiệm cận ngang.
- Bảng biến thiên:

- Đồ thị (Hình 07)

Hình 07
Bảng tóm tắt các tính chất của hàm số mũ $y = {a^x}\left( {a > 0,a \ne 1} \right)$

II. Hàm số lôgarit
Cho số thực dương a khác 1. Hàm số $y = {\log _a}x$ được gọi là hàm số lôgarit cơ số a.
* Đạo hàm của hàm số mũ
Định lí 3:
Hàm số $y = {\log _a}x\left( {a > 0,a \ne 1} \right)$ có đạo hàm tại mọi x>0 và $\left( {{{\log }_a}x} \right)' = \frac{1}{{x\ln a}}$.
Đặc biệt: $\left( {\ln x} \right)' = \frac{1}{x}$
* Khảo sát hàm số mũ $y = {\log _a}x\left( {a > 0,a \ne 1} \right)$
1. $y = {\log _a}x,a > 1$
- Tập xác định: $\left( {0; + \infty } \right)$
- Sự biến thiên: $y' = \frac{1}{{x\ln a}} > 0,\forall x > 0$
Giới hạn đặc biệt: $\mathop {\lim }\limits_{x \to {0^ + }} {\log _a}x = - \infty ,\mathop {\lim }\limits_{x \to + \infty } {\log _a}x = + \infty $
Tiệm cận:
Trục Oy là tiệm cận đứng.
- Bảng biến thiên:

- Đồ thị (Hình 08)
Hình 08
2. $y = {\log _a}x,0 < a < 1$
- Tập xác định: $\left( {0; + \infty } \right)$
- Sự biến thiên: $y' = \frac{1}{{x\ln a}} < 0,\forall x > 0$
Giới hạn đặc biệt: $\mathop {\lim }\limits_{x \to {0^ + }} {\log _a}x = + \infty ,\mathop {\lim }\limits_{x \to + \infty } {\log _a}x = - \infty $
Tiệm cận:
Trục Oy là tiệm cận đứng.
- Bảng biến thiên:

- Đồ thị (Hình 09)
Hình 09
Bảng tóm tắt các tính chất của hàm số $y = {\log _a}x\left( {a > 0,a \ne 1} \right)$

Từ khóa » Hàm Số Y=a^x Có Tập Xác định Là
-
Hàm Số Mũ Và Hàm Số Lôgarit, Trắc Nghiệm Toán Học Lớp 12
-
Tập Xác định Của Hàm Số Mũ, Lũy Thừa, Logarit Cực đơn Giản [VD ...
-
Lý Thuyết Hàm Số Mũ, Hàm Số Lôgarit | SGK Toán Lớp 12
-
Tập Xác định Của Hàm Số (y = (e^x) ) Là:
-
Tập Xác định Của Hàm Số Mũ Lũy Thừa Lôgarit
-
Cho Hàm Số Y = A^ X Với 0 < A Khác 1 Mệnh đề Nào Sau đây SAI?...
-
Tóm Tắt Lý Thuyết Hàm Số Mũ Và Hàm Số Lôgarit
-
Tìm Tập Xác định Của Hàm Số Mũ Và Hàm Số Lôgarit
-
[ Cẩm Nang ] Tập Xác định Của Hàm Số Mũ,phương Trình Mũ, Bất ...
-
Cho Hàm Số Y = A^x Với 0 < A Khác 1. Mệnh đề Nào Sau đây SAI?
-
Tìm Tập Xác định Của Hàm Số Mũ, Lũy Thừa, Lôgarit
-
Bài 4. Hàm Số Mũ Hàm Số Lôgarit
-
Cách Tìm Tập Xác định Của Hàm Số Mũ, Lũy Thừa, Logarit - TopLoigiai