Bài 8: Đường Tròn Nội Tiếp. Đường Tròn Ngoại Tiếp - Hoc24
Có thể bạn quan tâm
HOC24
Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng- Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Lớp học
- Lớp 12
- Lớp 11
- Lớp 10
- Lớp 9
- Lớp 8
- Lớp 7
- Lớp 6
- Lớp 5
- Lớp 4
- Lớp 3
- Lớp 2
- Lớp 1
Môn học
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Đạo đức
- Tự nhiên và xã hội
- Khoa học
- Lịch sử và Địa lý
- Tiếng việt
- Khoa học tự nhiên
- Hoạt động trải nghiệm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Chủ đề / Chương
Bài học
HOC24
Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng- Lớp 9
- Toán lớp 9 (Chương trình cũ)
- Chương III - Góc với đường tròn
Chủ đề
- Bài 1: Góc ở tâm. Số đo cung
- Bài 2: Liên hệ giữa cung và dây
- Bài 3: Góc nội tiếp
- Bài 4: Góc tạo bởi tiếp tuyến và dây cung
- Bài 5: Góc có đỉnh bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn.
- Bài 6: Cung chứa góc
- Bài 7: Tứ giác nội tiếp
- Bài 8: Đường tròn nội tiếp. Đường tròn ngoại tiếp
- Bài 9: Độ dài đường tròn
- Bài 10: Diện tích hình tròn
- Ôn tập góc với đường tròn
- Lý thuyết
- Trắc nghiệm
- Giải bài tập SGK
- Hỏi đáp
- Đóng góp lý thuyết
1. Định nghĩa
- Đường tròn đi qua tất cả các đỉnh của một đa giác được gọi là đường tròn ngoại tiếp đa giác và đa giác được gọi là đa giác nội tiếp đường tròn.
- Đường tròn tiếp xúc với tất cả các cạnh của một đa giác được gọi là đường tròn nội tiếp đa giác và đa giác được gọi là đa giác ngoại tiếp đường tròn.
Ví dụ:
- Đường tròn \(\left(O;R\right)\) là đường tròn ngoại tiếp hình vuông \(ABCD\), hình vuông \(ABCD\) nội tiếp đường tròn \(\left(O;R\right)\).
- Đường tròn \(\left(O;r\right)\) là đường tròn nội tiếp hình vuông \(ABCD\), hình vuông \(ABCD\) ngoại tiếp đường tròn \(\left(O;r\right)\).
Nhận xét: Không phải đa giác nào cũng có đường tròn ngoại tiếp hoặc đường tròn nội tiếp.
@59827@2. Định lí
Bất kì đa giác đều nào cũng đều có một và chỉ một đường tròn nội tiếp, có một và chỉ một đường tròn ngoại tiếp.
Nhận xét: Trong một đa giác đều, tâm của đường tròn nội tiếp trùng với tâm của đường tròn ngoại tiếp và được gọi là tâm của đa giác đều.
Ví dụ:
+) Với tam giác đều:
+) Với tứ giác đều (hình vuông):
+) Với ngũ giác đều:
+) Với lục giác đều:
Tổng quát: Với đa giác đều \(n\) cạnh:
- Với \(n\) lẻ: Tâm của đa giác là giao điểm các đoạn thẳng nối đỉnh và trung điểm cạnh đối diện.
- Với \(n\) chẵn: Tâm của đa giác là giao điểm các đoạn thẳng nối hai đỉnh đối diện.
- Lý thuyết
- Trắc nghiệm
- Giải bài tập SGK
- Hỏi đáp
- Đóng góp lý thuyết
Khoá học trên OLM (olm.vn)
- Toán lớp 9
- Ngữ văn lớp 9
- Tiếng Anh lớp 9
- Vật lý lớp 9
- Hoá học lớp 9
- Sinh học lớp 9
- Lịch sử lớp 9
- Địa lý lớp 9
Khoá học trên OLM (olm.vn)
- Toán lớp 9
- Ngữ văn lớp 9
- Tiếng Anh lớp 9
- Vật lý lớp 9
- Hoá học lớp 9
- Sinh học lớp 9
- Lịch sử lớp 9
- Địa lý lớp 9
Đóng góp
Lưu lại Lớp học Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1 Môn học Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Bộ sách Chương trình cũ Hỗ trợ học sinh học sách Cánh Diều Hỗ trợ học sinh học sách Kết nối tri thức với cuộc sống Hỗ trợ học sinh học sách Chân trời sáng tạo Explore English Global Success Friends Plus I-learn Smart World Chủ đề cha Đang tải dữ liệu... Lọc câu hỏi Đang tải dữ liệu... Nội dungTừ khóa » đa Giác Nội Tiếp đường Tròn
-
Đa Giác Ngoại Tiếp, đa Giác Nội Tiếp đường Tròn - Toán Bồi Dưỡng Lớp 9
-
Lý Thuyết đường Tròn Nội Tiếp, Ngoại Tiếp đa Giác
-
Ôn Tập Về đa Giác đều Nội Tiếp, Ngoại Tiếp đường Tròn
-
Đường Tròn Ngoại Tiếp, Nội Tiếp đa Giác - Hình Học 9 - Toán Lớp 9
-
Đường Tròn Ngoại Tiếp. Đường Tròn Nội Tiếp
-
Ôn Tập: Đa Giác đều Ngoại Tiếp - Nội Tiếp đường Tròn
-
Lý Thuyết đường Tròn Ngoại Tiếp, đường Tròn Nội Tiếp | SGK Toán Lớp 9
-
Phương Pháp Chứng Minh đa Giác Nội Tiếp Một đường Tròn Hình Học 9
-
Thế Nào Là đường Tròn Nội Tiếp, đường Tròn Ngoại Tiếp?
-
Số đường Tròn Nội Tiếp Của Một đa Giác đều Là
-
[PDF] ĐA GIÁC NỘI, NGOẠI TIẾP ĐƯỜNG TRÒN VÀ CÁC BÀI TOÁN LIÊN ...
-
Đường Tròn Ngoại Tiếp – Wikipedia Tiếng Việt
-
Bài 8: Đường Tròn Ngoại Tiếp Và đường Tròn Nội Tiếp