Đường Tròn Ngoại Tiếp – Wikipedia Tiếng Việt
Có thể bạn quan tâm
Nội dung
chuyển sang thanh bên ẩn- Đầu
- Bài viết
- Thảo luận
- Đọc
- Sửa đổi
- Sửa mã nguồn
- Xem lịch sử
- Đọc
- Sửa đổi
- Sửa mã nguồn
- Xem lịch sử
- Các liên kết đến đây
- Thay đổi liên quan
- Trang đặc biệt
- Liên kết thường trực
- Thông tin trang
- Trích dẫn trang này
- Lấy URL ngắn gọn
- Tải mã QR
- Tạo một quyển sách
- Tải dưới dạng PDF
- Bản để in ra
- Wikimedia Commons
- Khoản mục Wikidata
Trong hình học, đường tròn ngoại tiếp của một đa giác là một đường tròn đi qua tất cả các đỉnh của đa giác.
Một đa giác có đường tròn ngoại tiếp được gọi là đa giác nội tiếp đường tròn. Tất cả các đa giác đều, các tam giác và các hình chữ nhật đều là đa giác nội tiếp đường tròn.
Một khái niệm có liên quan là bao tròn nhỏ nhất, đó là đường tròn nhỏ nhất chứa toàn bộ đa giác ở bên trong. Không phải mọi đa giác đều có đường tròn ngoại tiếp, nhưng mọi đa giác đều có bao tròn nhỏ nhất. Thậm chí một đa giác có đường tròn ngoại tiếp thì đường tròn đó có thể không trùng với bao tròn nhỏ nhất; ví dụ, một tam giác tù, bao tròn nhỏ nhất của nó có đường kính là một cạnh nhưng đường tròn ấy không đi qua đỉnh góc tù của tam giác.
Wikimedia Commons có thêm hình ảnh và phương tiện truyền tải về Đường tròn ngoại tiếp.Tham khảo
[sửa | sửa mã nguồn]Bài viết liên quan đến toán học này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.
|
- Sơ khai toán học
- Hình học
- Tam giác
- Phép dựng hình bằng thước kẻ và compa
- Tất cả bài viết sơ khai
Từ khóa » đa Giác Nội Tiếp đường Tròn
-
Đa Giác Ngoại Tiếp, đa Giác Nội Tiếp đường Tròn - Toán Bồi Dưỡng Lớp 9
-
Lý Thuyết đường Tròn Nội Tiếp, Ngoại Tiếp đa Giác
-
Ôn Tập Về đa Giác đều Nội Tiếp, Ngoại Tiếp đường Tròn
-
Đường Tròn Ngoại Tiếp, Nội Tiếp đa Giác - Hình Học 9 - Toán Lớp 9
-
Đường Tròn Ngoại Tiếp. Đường Tròn Nội Tiếp
-
Ôn Tập: Đa Giác đều Ngoại Tiếp - Nội Tiếp đường Tròn
-
Lý Thuyết đường Tròn Ngoại Tiếp, đường Tròn Nội Tiếp | SGK Toán Lớp 9
-
Bài 8: Đường Tròn Nội Tiếp. Đường Tròn Ngoại Tiếp - Hoc24
-
Phương Pháp Chứng Minh đa Giác Nội Tiếp Một đường Tròn Hình Học 9
-
Thế Nào Là đường Tròn Nội Tiếp, đường Tròn Ngoại Tiếp?
-
Số đường Tròn Nội Tiếp Của Một đa Giác đều Là
-
[PDF] ĐA GIÁC NỘI, NGOẠI TIẾP ĐƯỜNG TRÒN VÀ CÁC BÀI TOÁN LIÊN ...
-
Bài 8: Đường Tròn Ngoại Tiếp Và đường Tròn Nội Tiếp