Bài Tập Cơ Học Lưu Chất

Trang chủ Trang chủ Tìm kiếm Trang chủ Tìm kiếm Bài tập cơ học lưu chất doc Số trang Bài tập cơ học lưu chất 28 Cỡ tệp Bài tập cơ học lưu chất 920 KB Lượt tải Bài tập cơ học lưu chất 33 Lượt đọc Bài tập cơ học lưu chất 572 Đánh giá Bài tập cơ học lưu chất 4.3 ( 6 lượt) Xem tài liệu Nhấn vào bên dưới để tải tài liệu Tải về Chuẩn bị Đang chuẩn bị: 60 Bắt đầu tải xuống Để tải xuống xem đầy đủ hãy nhấn vào bên trên Chủ đề liên quan bài tập cơ lưu chất ôn thi cơ học lưu chất thí nghiệm thuỷ lực Hệ số giãn nở Hệ số nền

Nội dung

Cơ Học Lưu Chất BÀI TẬP CHƯƠNG I MỞ ĐẦU Bài 1.1 Để làm thí nghiệm thủy lực, người ta đổ đầy nước vào một đường ống có đường kính d = 300mm, chiều dài L = 50m ở áp suất khí quyển. Hỏi lượng nước cần thiết phải đổ vào ống là bao nhiêu để áp suất đạt tới 51at ? Biết hệ số nén ép  p  1 at  1 20000 Giải Lượng nước cần thiết phải đổ vào ống để áp suất tăng lên 51at là : 1 dV  dV   p .V .dp Ta có hệ số giãn nở do áp lực :  p  V dp Do dV , dp đồng biến nên :  p  Mà thể tích V  S .L   dV  1 dV  dV   p .V .dp V dp  .d 2 3,14.(0.3) 2 .L  .50 3,5325m 3 4 4 1 .3,5325.(51  1) 8,84.10  3 (m 3 ) 8,84 (liter ) 20000  Vậy cần phải thêm vào ống 8.84 lít nước nữa để áp suất tăng từ 1at lên 51at. Bài 1.2 Trong một bể chứa hình trụ thẳng đứng có đường kính d = 4m, đựng 100 tấn dầu hỏa có khối lượng riêng  850kg / m 3 ở 100C. Xác định khoảng cách dâng lên của dầu trong bể chứa khi nhiệt độ tăng lên đến 400C. Bỏ qua giãn nở của bể chứa. Hệ số giãn nở vì nhiệt  t 0,00072 0 C  1 . Giải Khối lượng riêng của dầu hỏa là :   m m 100.10 3 2000  V    117 ,65(m 3 ) V  850 17 Hệ số giãn nở do nhiệt độ : 1 dV 2000 216  dV   t .V .dt 0,00072. .(40  30)  2,542(m 3 ) V dt 17 85 2 4.2,542  .d 4dV .h  h   0,202(m) Mà : dV  2 4  .d 3,14.4 2 t   Vậy khoảng cách dầu dâng lên so với ban đầu là 0.202(m) Bài 1.3 Khi làm thí nghiệm thủy lực, dùng một đường ống có đường kính d = 400mm, dài L = 200m, đựng đầy nước ở áp suất 55 at. Sau một giờ áp suất giảm xuống còn 50 at. Xác định lượng nước chảy qua các kẽ hở của đường ống. Hệ số nén ép  p  1 at  1 . 20000 Giải Hệ số giãn nở do áp lực :  p  1 dV  .d 2  dV   p .V .dp   p .L.dp V dp 4  dV  1 3,14.0,4 2 .200. (50  55) 6,28.10  3 (m 3 ) 6,28 (liter ) 20000 4  Vậy lựơng nước chảy qua khe hở đường ống là 6.28 (liter) Bài 1.4 Page 1 of 24 Cơ Học Lưu Chất Một bể hình trụ đựng đầy dầu hỏa ở nhiệt độ 5 0C, mực dầu cao 4m. Xác định mực dầu tăng lên, khi 0 1 nhiệt độ tăng lên 250C. Bỏ qua biến dạng của bể chứa. Hệ số giãn nở vì nhiệt  t 0.00072 C . Giải 1 dV  dV  t .V .dt V dt Hệ số giãn nở do nhiệt độ :  t   .d 2 .h 4  .d 2 Thể tích dầu tăng lên : dV  h 4 Mà thể tích ban đầu là : V  1 dV h  V dt h.dt  h   t .h.dt 0,00072.4.( 25  5) 0,058(m) 58(mm) t  BÀI TẬP CHƯƠNG II THỦY TĨNH HỌC Bài 2.1 Xác định độ cao của cột nước dâng lên trong ống đo áp (h). Nước trong bình kín chịu áp suất tại mặt tự do là p 0t 1.06at . Xác định áp suất p 0 t nếu h = 0.8m. Giải Chọn mặt đẳng áp tại mặt thoáng của chất lỏng. Ta có : p A  p B Page 2 of 24 Cơ Học Lưu Chất Mà p A  p0 p B  p0  h    , h  p 0  p a  .h p0  p a (1,06  1).9,81.10 4  0,6 (m)  9810 Nếu h=0,8m thì  p0 .h  p a 9810.0,8  98100 105948 N / m 2 1,08 ( at ) Bài 2.2 Một áp kế đo chênh thủy ngân, nối với một bình đựng nước. a) Xác định độ chênh mực nước thủy ngân, nếu h 1 = 130mm và áp suất dư trên mặt nước trong bình 40000 N/m2. b) Áp suất trong bình sẽ thay đổi như thế nào nếu mực thủy ngân trong hai nhánh bằng nhau. Giải a) Xác định độ chênh mực thủy ngân (tìm h2) : Chọn mặt đẳng áp như hình vẽ : p A  pB Ta có : p A  p0   H 2O .( h1  h2 ) p B  p a   Hg .h2  p0   H 2O .(h1  h2 )  p a   Hg .h2  h2 (Hg   H 2O ) ( p0  p a )  H 2O .h1 Mà p0  p a  p d Vậy : h2  p d   H 2O .h1 ( H 2O   Hg )  40000  9810.0,013 0,334 (m) 132890  98100 b) Áp suất trong bình khi mực thủy ngân trong hai nhánh bằng nhau : Ta có : pC  p D pC  p0   H 2O .h p D  pa  p0  H 2O .h  p a  H 2O .h  p a  p 0  pck  p ck  H 2O .h  H 2O .( h1  1 2 h2 ) 1 9810.(0,13  .0,334) 2913,57 0,0297 (at ) 2 Bài 2.3 Một áp kế vi sai gồm một ống chữ U đường kính d = 5mm nối hai bình có đường kính D = 50mm với nhau. Máy đựng đầy hai chất lỏng không trộn lẫn với nhau, có trọng lượng riêng gần bằng nhau : dung dịch rượu êtylic trong nước ( 1 8535 N / m 3 ) và dầu hỏa ( 2 8142 N / m 3 ). Lập quan hệ giữa độ chênh lệch áp suất p  p1  p 2 của khí áp kế phải đo với độ dịch chuyển của mặt phân cách các chất lỏng (h) tính từ vị trí ban đầu của nó (khi p 0 ). Xác định p khi h = 250mm. Giải a) Lập mối quan hệ giữa độ chênh lệch áp suất p  p1  p 2 : Chọn mặt đẳng áp như hình vẽ : Khi p 0 ( p1  p 2 ) : thì mặt phân cách giữa hai lớp chất lỏng khác nhau ở vị trí cân bằng O : Page 3 of 24 Cơ Học Lưu Chất o p A  pB o p A  p1  1.h1 o p B  p2  2 .h2 1.h1 2 h2  h1  Theo điều kiện bình thông nhau : 2 h2 1 Khi p  0 ( p1  p 2 ) : thì mực nước trong bình 1 hạ xuống 1 đoạn h và đồng thời mực nước bình 2 tăng lên 1 đoạn h . Khi đó mặt phân cách di chuyển lên trên 1 đoạn h so với vị trí O. p A  p1  1.( h1  h) p B  p2  2 .(h2  h  h)  1.h Theo tính chất mặt đẳng áp ta có : p1  1.( h1  h)  p2  2 .(h2  h  h)  1.h  p1  p2 2 .(h2  h  h)  1.( h1  h)  1.h  p1  p2 h.(1  2 )  h.(1  2 )  [1.h1  2 h2 ] (*) Ta thấy thể tích bình 1 giảm một lượng : V   .d 2 h 4  .d 2 h 4 Thể tích trong ống dâng lên một lượng : V '  Ta có V V '  h  d2 D2 h và 1 .h1 2 h2 thay vào (*) d2 p  p1  p2 h.(1  2 )  Ta được : D2 h.(1  2 )   d2 h  (1  2 )  2 .(1  2 )  D   Tính p khi h = 250mm  Ta có : p 0,25  8535  8142    ĐS : a/ p h  (1  2 )   d 0,0052 0,05 2   8535  8142  140 N / m 2  2  .(1  2 ) D  2 b/ p 140 N / m 2 Bài 2.4 Xác định vị trí của mặt dầu trong một khoang dầu hở của tàu thủy khi nó chuyển động chậm dần đều trước lúc dừng hẳn với gia tốc a = 0.3 m/s 2. Kiểm tra xem dầu có bị tràn ra khỏi thành không, nếu khi tàu chuyển động đều, dầu ở cách mép thành một khoảng e = 16cm. Khoảng cách tàu dài L = 8m. Giải Chọn hệ trục tọa độ như hình vẽ, ta biết mặt tự do của dầu là mặt đẳng áp. Phương trình vi phân mặt đẳng áp : Xdx  Ydy  Zdz 0 (*) Có : X a ; Y 0 ; Z  g thay vào (*) (*)  adx  gdz 0 Tích phân ta được : a.x  g .z C Page 4 of 24 Cơ Học Lưu Chất Vì mặt tự do của dầu đi qua gốc tọa độ O (x=0, z=0) Nên phương trình mặt tự do sẽ là : a.x  g .z 0 Có z  x.tg trong đó tg  a  C 0 . g Như vậy mặt dầu trong khoang là mặt phẳng nghiêng về phía trước : a 0,3 L 8  z  x. 4. 0,1224 (m) 12,24 (cm) với x   4 (m) g 9,81 2 2 Ta thấy z = 12,24 (cm) < e = 16 (cm) nên dầu không tràn ra ngoài. Bài 2.5 Một toa tàu đi từ ga tăng dần tốc độ trong 10 giây từ 40 km/h đến 50 km/h. Xác định áp suất tác dụng lên điểm A và B. Toa tàu hình trụ ngang có đường kính d = 2,5m, chiều dài L = 6m. Dầu đựng đầy một nửa toa tàu và khối lượng riêng của dầu là 850 kg/m 3. Viết phương trình mặt đẳng áp và mặt tự do của dầu. Giải Gia tốc của toa tàu là : a vt  v0 50  40  0.28 (m / s ) t 10.3600 Chọn hệ trục tọa độ như hình vẽ. Phương trình vi phân cơ bản của chất lỏng : dp  ( Xdx  Ydy  Zdz ) Tích phân ta được : p   ( Xx  Yy  Zz )  C (*) Có X = -a; Y = 0; Z = -g Thay X, Y, Z vào (*) ta được : p  (  ax  gz )  C Vì mặt tự do của dầu đi qua gốc tọa độ (x=0, z=0)  C  p  p a Vậy : p   ( ax  gz )  pa Áp suất tại A (x= -L/2 = -3; y=0; z=-d/2 = -1,25) là : p A 850  0,28.( 3)  9,81.( 1,25)  98100 109237,2 N / m 2 1,113 ( at )  p dA  p A  p a 1,113  1 0,113 ( at ) Áp suất tại B (x= L/2 = 3; y=0; z=-d/2 = -1,25) là : p A 850  0,28.(3)  9,81.( 1,25)  98100 107809,2 N / m 2 1,099 (at )  p dA  p A  p a 1,099  1 0,099 (at ) Phương trình mặt đẳng áp : Phương trình vi phân đẳng áp : Xdx  Ydy  Zdz 0 Với : X = -a; Y = 0; Z = -g   adx  gdz 0 a Tích phân ta được :   adx  gdz C  z  x  C g Phương trình mặt tự do : Tại mặt thoáng : x = 0; y = 0; z = 0  C 0 a x Nên : z  g Bài 2.6 Một bình hở có đường kính d = 500 mm, đựng nước quay quanh một trục thẳng đứng với số vòng quay không đổi n = 90 vòng/phút. Page 5 of 24 Cơ Học Lưu Chất a) Viết pt mặt đẳng áp và mặt tự do, nếu mực nước trên trục bình cách đáy Z0 = 500mm. b) Xác định áp suất tại điểm ở trên thành bình cách đáy là a = 100mm. c) Thể tích nước trong bình là bao nhiêu, nếu chiều cao bình là H = 900mm. Giải Chọn hệ trục tọa độ như hình vẽ : a) Viết phương trình mặt đẳng áp và mặt tự do, nếu mực nước trên trục bình cách đáy Z0 = 500mm. Phương trình vi phân mặt đẳng áp : Xdx  Ydy  Zdz 0 Trong đó : X  2 x ; Y  2 y ; Z  g Thay vào phương trình vi phân ta được :  2 xdx   2 ydy  gdz 0 1 2 2 1 2 2  x   y  gz C 2 2 1   2 x 2  y 2  g.z C 2 1   2 r 2  g .z C (*) 2 Tích phân :   Vậy phương trình mặt đẳng áp là :  2r 2 z C 2g Đối với mặt tự do cách đáy Z0 = 500mm Tại mặt tự do của chất lỏng thì : x = y = 0 và z = z0 thay vào (*)  C  g .z 0  2r 2  2r 2  g .z 0 hay z   z0 2g 2g Vậy phương trình mặt tự do sẽ là : z  b) Xác định áp suất tại điểm trên thành bình cách đáy 1 khoảng a = 100mm : Phương trình phân bố áp suất : dp  ( Xdx  Ydy  Zdz ) Trong đó : X  2 x ; Y  2 y ; Z  g  Thay vào ta được : dp   2 xdx   2 ydy  gdz  1 2 2 1   y  gz   C 2 2  1   p     2 x 2  y 2  g .z   C 2  2 2 Tích phân : p     x    1   p     2 r 2  g .z   C 2  (**) Tại mặt tự do (tại O) ta có : x = y = 0 và z = z0  p  p a Thay vào (**)  C   .g.z 0  p a (**)  p   Vì 1 2 2  2r 2  r   .g .z  p a   .g .z 0  p a  .h   2 2  h  z 0  2 x 2 r   .g    z  y 2 Điểm trên thành bình cách đáy 100mm có : p a 1at ; r d 2 0,5 2 0,25m h  z 0  z 500  100 400 0,4m ;    .n 3,14.90  9,42 rad / s 30 30 Page 6 of 24 Cơ Học Lưu Chất Áp suất tại điểm này sẽ là :  pd  p  pa .h    2r 2 9,422.0,252 9810.0,4  1000 6697 N / m 2 0,068 at 2 2 Bài 2.7 Người ta đúc ống gang bằng cách quay khuôn quanh 1 trục nằm ngang với tốc độ quay không đổi n = 1500 vòng/phút. Xác định áp suất tại mặt trong của khuôn, nếu trọng lượng riêng của ống gang lỏng  68670 N / m 3 . Cho biết thêm đường kính trong của ống d = 200mm, chiều dày ống  20 mm . Tìm hình dạng của mặt đẳng áp. Giải  .n 3,14.1500  157 rad / s Tốc độ quay :   30 30 Gia tốc lực ly tâm trên mặt khuôn : a  2 .r 157.0,12 2950 m / s 2 Trong đó : r r0    d 0,2    0,02 0,12m 2 2 Vì g = 9,81 m/s2 13406 (N) Bài 2.10 Một cửa van phẳng hình chữ nhật nằm nghiêng tựa vào điểm D nằm dưới trọng tâm C 20cm (tính theo chiều nghiêng) ở trạng thái cân bằng. Xác định áp lực nước lên của van nếu chiều rộng của nó b = 4m và góc nghiêng  60 0 . Giải Ta có Z D  Z C  a Mà Z C  hC H  sin  2 sin  Page 9 of 24 Cơ Học Lưu Chất H a 2 sin  2H Mặt khác Z D  3 sin   H a.b. sin  0,2.6. sin 60 0 1,04  m   ZD  Vậy P  .b 9810.4 H2  .1,04 2 24504  N  2 sin  2. sin 60 0 Bài 2.11 Xác định lực tác dụng lên nắp ống tròn của thùng đựng dầu hỏa. Đường kính ống d = 600 mm, mực dầu H = 2.8m. Xác định điểm đặt của tổng tĩnh áp. Khối lượng riêng dầu hỏa là 880 kg/m 3. Cho moment quán tính I 0   .d 4 64 Giải Lực tác dụng lên nắp ống chính là lực dư : P .h. Trong đó : hc là khoảng cách từ tâm diện tích đến mặt thoáng = H  - diện tích nắm ống tròn  P 880.2,8. 3,14.0,6 2 696,68  kg  6834,43  N  4 Điểm đặt : Z D  Z C  Với : I0  .d 4 4 1 H  2,808  m  .Z C 64 d 2 H  Z C H  d 2    4   d 4  I 0 64     Chương IV TỔN THẤT NĂNG LƯỢNG Bài 4.1 Từ bình A, áp suất tuyệt đối tại mặt thoáng trong bình là 1.2at, nước chảy vào bình hở B. Xác định lưu lượng nước chảy vào bình B, nếu H1 = 10m, H2 = 2m, H3 = 1m, đường kính ống d = 100mm, đường kính ống D = 200mm, hệ số cản ở khoa  k 4 , bán kính vòng R = 100mm, bỏ qua tổn thất dọc đường. Page 10 of 24 Cơ Học Lưu Chất Giải Viết phương trình cho mặt cắt 1-1 & 2-2, lấy 2-2 làm chuẩn ta có: z1  p1 1v12 p  v2   z 2  2  2 2  h  2g  2g Trong đó H H 1  H 2  8m ; z2 0  z1 Cho n   1  1 2   1 , 2 at  1 , 2.9 8 10 0  11 77 2 0 N /  p1 v1  v  0 2   :  m 2 ; p2  pa p1 p2   h    H Với h hd     1  hc  hc   vd2 2g   2   3   4   5   6   7   8 1   2  3 3   4   5   8 2  d   1 0,5 1     0,5   D     2  k 4  3  6  7 0,29 . Vì 2 d 2R 0,5   0,29 2 2 2   9  0,1   d    4  1      1         D 0 , 2 16         2 2    0,1   3 d    5 0,5 1     0,5 1        D    0,2   8    8 1       1 2  3 3   4   5   8 0,5  4  3.0,29  9  3 1 7,0075 16 8 Page 11 of 24 Cơ Học Lưu Chất  H 2 d v p1 p 2      2g  H  1  p  p   2 g 2 117720  98100 .2.9,81 8 1  1   9810  vd   5,29  m / s  7,0075    Lưu lượng nước chảy vào bình B là : Q Vd . Ad Vd . . d 2 2 4 5,29.3,14. 0,1 4 0,041  m 3 / s  41  l / s  Bài 4.2 Nước chảy từ bình cao xuống thấp qua ống có đường kính d = 50mm, chiều dài L = 30m. Xác định độ chân không ở mặt cắt x-x, nếu độ chênh lệch mực nước trong hai bình H = 4.5m, chiều cao của xi phông z = 2.5m, hệ số cản dọc đường  0,028 , bán kính vòng R = 50mm, khoảch cách từ đầu ống đến mặt cắt x-x là L1 = 10m. Giải Viết phương trình Becnouly cho mặt cắt 1-1 & 2-2. Cho mặt cắt 2-2 làm chuẩn ta có : z1  p1 1v12 p  v2   z 2  2  2 2  h  2  2 Trong đó : (*)  H ; z  z1   Ch on 1 2  p1  p2  pa   v  v  0  1 2   2 0  1 Thay vào (*) ta được : 2  L v H h        d  2g   v 2 gH L    d L 30 0,028 16,8 d 0,05   1   2   3   4   5   6 1  4 2   6 0,5  4.0,29  1 2,66 Page 12 of 24 Cơ Học Lưu Chất Vậy : v 2 gH 2.9,81.4,5  2,13  m / s  v x L 16 , 8  2 , 66    d Viết phương trình Becnouly cho mặt cắt 1-1 & x-x. Cho mặt cắt 1-1 làm chuẩn ta có : z1  p  v2 p1 1v12   z x  x  x x  h x  2g  2g 0  z1  Ch on  p1  p   v  0  1 Trong đó : (**)   ; z 2  1 z x  1 x p2  v x a v2 p x Thay vào (**) ta được : pa  p x v2  L1  x  h x  2g Mà 2  L v h x   1     x  d  2g L 10  1 0,028 5,6 d 0,05  hck  z x  hck  pa  p x     Và 1  hck  z x  v x2  hx 2g   2 0,5  0,29 0,79 v x2 2,132  hx 2,5  1  5,6  0,79 4,21m 2g 2.9,81 Bài 4.3 Có một vòi phun cung cấp nước từ một bể chứa cao H = 10m, qua ống có đường kính d 1 = 38mm, chiều dài L = 18m. Đường kính bộ phận lắng D = 200mm. Vòi phun là ống hình nón, miệng vòi, d 2 = 20mm, có hệ số giãn cản  vòi 0.5 tính theo vận tốc trong ống. Xác định lưu lượng Q chảy qua vòi và chiều cao dòng nước phun lên, giả thiết sức cản của không khí làm giảm đi 20% chiều cao. Cho hệ số giãn nở  0.03 , hệ số tổn thất cục bộ của khóa  k 4 , bán kính vòng R – 76mm. Trong đó : V2 : lưu tốc nước chảy qua vòi phun A2 : tiết diện lỗ vòi phun : A2   .d 2 4 V : lưu tốc nước chảy trong ống A : tiết diện của ống : A  .d1 4 2  d   1 0,51     0,5  D     2  6  k 4  3  7  8  9 0,15  d  Vi :  0,25    0,15 2 R   Giải z1  2 2 2 2   mặt 0,038 ta có : chuẩn Viết phương trình Becnouly cho mặt cắt 1-1 & 2-2. Cho  dcắt   2-2 làm  4   1      1     0,93  D    0,2    p1 1v12 p 2  2 v 22    2g Trong đó : z2    2g  h H  z1 Cho n   p1  p   0 v 1 Thay vào (*) ta được :  2 (*) 1 ;    p z a 2 2 2    0,038   d    5 0,51     0,51     0,48  D    0,2     10  voi 0,5 0 2  1 Page 13 of 24 Cơ Học Lưu Chất H 2 2 2 2 2  L v v v  h         2g 2 g  d1  2g  L   2 gH v 22        v 2 (**)  d1  Phương trình liên tục : d  v .A v. A v 2 . A2  V  2 2 v 2  2  A1  d1  L 18  0,03. 14,21 d1 0,038    1 2   2   3   4   5   6   7   8   9  10 1  2 2  4 3   4   5  10 0,5  2.4  4.0,15  0,93  0,48  0,5 11,01 Thế tất cả vào (**) ta được :  L  d4 2 gH 2 gH v 22        v 22 24  v 2   L  d4  d1  d1 1        24  d1  d1 v2  2.9,81.10 0,02 4 1  14,21  11,01 0,038 4 8,18  m / s  Lưu lượng chảy qua vòi : Q v 2 . A2 v 2 . Chiều cao nước phun lên : hv 0,8  .d 22 3,14.0,02 2 8,18. 0,0026  m 3 / s  2,6  l / s  4 4 v 22 8,18 2 0,8 2,73  m  2g 2.9,81 Bài 4.4 Máy bơm lấy nước từ giếng cung cấp cho tháp chứa để phân phối cho một vùng dân cư. (Hình 4.4) Cho biết :  Cao trình mực nước trong giếng : z1 = 0.0m  Cao trình mực nước ở tháp chứa nước z2 = 26.43m  Ống hút: dài L = 10m, đường kính ống d = 250mm, các hệ số sức cản cục bộ: chỗ vào có lưới chắn rác(  vào 6 ) một chỗ uốn cong(  uôn 0.294 ),n = 0.013(ống nằm ngang bình thường)   Ống đẩy : L =35m; d = 200mm; n=0.013; không tính tổn thất cục bộ. Máy bơm ly tâm : lưu lượng Q = 65L/s; hiệu suất  0.65 ; độ cao chân không cho phép ở chỗ   máy bơm hck 6m cột nước. Yêu cầu : 1. Xác định độ cao đặt máy bơm. 2. Tính cột nước H của máy bơm. 3. Tính cống suất N mà máy bơm tiêu thụ. 4. Vẽ đường năng lượng và đường đo áp. Xem dòng chảy trong các ống thuộc khu sức cản bình phương. Giải 1. Xác định độ cao đặt máy bơm : Page 14 of 24 Cơ Học Lưu Chất Máy bơm chỉ được đặt cách mặt nước trong giếng một khoảng h b nào đó không quá lớn để cho áp suất tuyệt đối ở mặt cắt 2-2 không quá bé một giới hạn xác định, tức áp suất chân không tại đây         không vượt quá trị số cho phép p ck  hck . Mà theo đề thì hck 6m cột nước  p ck 0,6at . Viết phương trình Becnouly cho mặt cắt 1-1 & 2-2, lấy 1-1 làm chuẩn ta có : z1  p1 1v12 p  v2   z 2  2  2 2  hh  2  2 Trong đó :  H  z1  Chon   p  p1 v  0  1 (*)  ; 1 a z   p  hb 2 và hh : là tổng tổn thất cột  1 2 2  pt2 nước trong ống hút. Thay vào (*) ta được : p a  pt2 pt pa v2 v2 hb  2  2  hh  hck hb  2  hh Vì : hck     2g 2g   Theo đề : hck  hck 6m cột nước  hb  hck    L v Tacó : hh hd  hcvao  hcuon   h   vao   uon  Tính  theo công thức    d 8g v 22  hh 2g 2  2g C2 1 1 1 d 0,25 1 0,0625m  C   0,0625 6 50,4 C  R 6 Với R   4 4 0,013 n 8g 8.9,81 L 10   2  0,03085   h 0,03085 1,234 2 C 50,4 d 0,25  m/s  Lưu tốc trong ống hút là : Q 4 4.0,065 Q v. A  v   2 .Q  1,324  m / s  A d 3,14.0,25 2  v2 1,324 2  0,09  m  2g 2.9,81 Vậy :  hb  5,23m Page 15 of 24 Cơ Học Lưu Chất 2. Tính cột nước H của máy bơm. Là tỉ năng mà bơn phải cung cấp cho chất lỏng khi đi qua nó, được biểu diễn bằng cột nước H (M cột nước). Ta có : H  H 0  hwđ  hwh Trong đó : H 0 : là độ chênh lệch địa hình, tức là độ cao mà máy bơm phải đưa nước lên. hwđ : tổn thất cột nước trong ống hút. hwh : tổn thất cột nước trong ống đẩy. H 0  Z 2  Z1 26,43  0,00 26,43m 2  L v hwđ   đ   vao   uon  2 1,234  6  0,294.0,09 0,68m  d  2g Lh v đ2 . d 2g Với Vđ là lưu tốc trung bình trong ống đẩy : 2 2 4Q 4.0,065 Vđ  2  2,07  m / s  Vđ  2,07 0,22m 2 d 3,14.0,2 2g 2.9,81 hwh  Với R    d 0,2  0,05  m  2 4 8g C 2  8.9,81 48,7 2  C 0,033   1 1  0,05 6 48,7 0,013  m /s  Lđ 35 0,033 5,78 d 0,25 Lh v đ2 . 5,78.0,22 1,27  m  d 2g Vậy cột nước của máy bơm là :  hwh  H  H 0  hwđ  hwh 26,43  0,68  1,27 28,4  m  cột nước. 3. Tính cống suất N mà máy bơm tiêu thụ : .Q.H 9810.0,065.28,4 N   27860  w  0,65 Bài 4.5 Nước từ một bình chứa A chảy vào bể chứa B, theo một đường ống gồm hai loại ống có đường kính khác nhau. (Hình 4.5). Biết z A = 13m, zB = 5m, L1 = 30m, d1 = 150mm, 50m, 1 0.031 ,d2 = 200mm, L2 = 2 0.029 . Ống dẫn là loại ống gang đã dùng, giả thiết nước trong ống ở khu sức cản bình phương. Tính lưu lượng Q và vẽ đường cột nước, đường đo áp của đường ống. Giải Page 16 of 24 Cơ Học Lưu Chất Viết phương trình Becnouly cho mặt cắt 1-1 & 2-2, lấy 0-0 làm chuẩn ta có : zA  p1 1v12 p  v2   z B  2  2 2  hh  2  2 Trong đó :  H  z1  Cho n   p  p1  v  v2  1  (1) ; 1 2 z    p 2 2  hb  1 a 0 Thay vào (1) ta được : h  Z A  Z B 13  5 8  m  Mặt khác : h   L1  v12  L2  v 22    h  h            d  c  1 d 1 2  2 g  2 d 3  2 g 1 2     (2) Phương trình liên tục : V1 . A1 V2 . A2  V1 V2 A2 d2 V2 22 A1 d1 Thay vào (2) ta được : 4  L1  v 22 d 24  L2  v 22 v 22   L1  d 2   L2    1  1   2     2   2    h  1  1   2        3 3 4  d1  2 g d1  d 2  2 g 2 g   d1  d1   d 2    v2  2 gh 4  L1  d   L   1  1   2   2    2 2   3   d1   d1   d 2  1 0,5 (bể vào ống) 2 2  d    1       D    2 2   150    1      200    2 0,191  3 1 (ống ra bể)  v2  2.9,81.8 4 30 50    0,2     0,5  0,191   1  0,031    0,029 0 , 15 0 , 15 0 , 2      Lưu lượng : Q v 2 2,2863  m / s   .d 22 3,14.0,2 2 2,2863. 0,0718 m 3 / s 71,8  l / s  4 4   Bài 4.6 Để đưa nước lên một tháp nước với lưu lượng Q = 40L/s, ta đặt một máy bơm ly tâm, cao hơn mực nước trong giếng hút là h b = 5m, mực nước trong tháp cao hơn máy h a = 28m, độ dài ống hút Lhút = 12m, độ dài ống đẩy Lđẩy = 3600m; đường ống hút và đẩy có hệ số ma sát  0.028 . Tính đường kính ống hút và đẩy, tính công suất máy bơm, biết hiệu suất máy bơm là  bom 0.8 , hiệu suất động cơ  đông co 0.85 , chân không cho phép của máy bơm là 6m. Giải Page 17 of 24 Cơ Học Lưu Chất Tính đường kính ống hút : Viết phương trình Becnouly cho mặt cắt 1-1 & 2-2, lấy 1-1 làm chuẩn ta có : z1  p1 1v12 p  v2   z 2  2  2 2  hh  2  2 Trong đó : 0  z1  C ho n   p  p1  v  0  1  ; (1) z   hb 2  1 2  1 a và hh : là tổng tổn thất cột nước trong ống hút. Thay vào (1) ta được : pa p  p2 p v2 v2 hb  2  2  hh  a hb  2  hh   2g  2g pa  p2 Vì : hck    L  v2 Và : hh   h  1  3 2  2  dh  2g   v2   v2 L L hck hb   1   h  1  3 2  2   1   h  1  3 2  2 hck  hb 6  5 1 dh dh   2g   2g Trong đó : v 2  4.Q d h2  v 22  16.Q 2 (2) và : 1 0,5 ;  2 0,29  2 .d h2  12  h Thay vào (2) ta được :  1  0,028 d  16.0,04 2  0,5  3.0,29  1 2 4  3,14 .2.9,81.d h  0,336  132.10  6    2,37  1  d h 200mm d h  d h4  Tính đường kính ống đẩy : Viết phương trình Becnouly cho mặt cắt 3-3 & 4-4 ta có : Page 18 of 24 Cơ Học Lưu Chất z3  p3   Trong đó :  3v32 2 z4  p4    4 v42 2 0  z3 Ch on    p  p 4 v 4 0    hđ ; 3 (3) z  4  4  ha  1 a và hh : là tổng tổn thất cột nước trong ống hút. Thay vào (3) ta được : p3 v32 p p  pa v2  ha  a  hđ  3 ha  3  hđ  2g   2g pa  p2 Vì : hck    L  v2 Và : hđ   đ  3  d đ  2g p3  p a v2  L  v2 ha  3    đ  3  2g  d đ  2g (4) Giải tương tự  d đ 200mm Năng lượng tăng thêm :  L  v2 L v2 H b  Z 4  hh  hđ  Z 4    h  1  3 2  2   đ 3 d đ 2g  dh  2g 4.Q 4.0,04 v2  2  1,273  m / s  d h 3,14.0,2 2 v3  4.Q d đ2  4.0,04 3,14.0,2 2 1,273  m / s  12 3600 1,273 2   1,273 2 H b 5  2,8   0,028  0,5  3.0,29   0,028 49,6  m  0,2 0,2 2.9,81   2.9,81 Công suất cần cung cấp cho máy bơm : .Q.H b 9810.0,04.49,6 N   28622  w  bom . dongco 0,8.0,85 Page 19 of 24 Cơ Học Lưu Chất BÀI TẬP CHƯƠNG V DÒNG CHẢY QUA LỖ, VÒI Bài 5.7 Xác định thời gian nước chảy hết một bể chứa lăng trụ, độ sâu nước trong bể H = 4m; có diện tích đáy  5m 2 , qua hai lỗ tròn, lỗ nằm ở thành bên cách đáy e = 2m và một lỗ ở đáy. Kích thước hai lỗ giống nhau d = 10 cm. Cho hệ số lưu lượng  0.6 Giải Ta có T T1  T2 T1 – thời gian qua T2 – thời gian qua T – thời gian tháo (bỏ qua v0) 2 lỗ (mực nước từ H lỗ đáy (khoảng e) toàn bộ  Lưu lượng lỗ bên : Qb   . A1  h  e2 g Lưu lượng lỗ đáy : Qđ   . A2 2 gh H e T1   H  .dh  .. 2 g .  ..e 2 g H e  H  h e  h   H-e)  .. 2 g . h  e  h dh   ..e 2 g  H e . 2 .   H  2e  3 2  2 H  e  3 2  4 3 2   3  ..e 2 g   2 3 5 H dh h e  h H e 3 2 32  2 2  3  h  e  3 h   H  2    4  2.2  3 2  2 4  2 3 2  4 3 2  187,1  s     .0,1 2. 2.9,81 4 2...e 2.5.2 T2   677,5  s   .. 2 ge  .0,12 0,6 2.9,81.2 4 T 187,1  677,6 864,6  s  1424,6 0,6. Bài 5.8 Page 20 of 24 Cơ Học Lưu Chất Tính thời gian tháo cạn bể chứa nước hình lăng trụ hình thang dài L = 4m, chiều rộng mặt thoáng B = 5m. Cho hệ số lưu lượng  0.6 . Giải Diện tích của mặt thoáng   MN.L Mà MN b  .MP MP  Ta có tỉ lệ : B  b h H 2  B b h  2  h  MP   H 5 8   12  h 5 Thời gian để nước chảy hết bể là : H2 T  .dh  M . A. 2 gh H1  1 d . 4 .65,6 5223 2 2 gh Vậy thời gian để nước chảy hết bể là 5223 Bài 5.9 Tính thời gian tháo hết nước trong bể chứa hình trụ tròn có đường kính d = 2.4m, cao H = 6m trong 2 trường hợp. a. Bể chứa dựng đứng, ở đáy có khoét lỗ, diện tích  1.76 dm 2 b. Bể chứa nằm ngang, ở đáy có khoét lỗ, cũng có diện tích  1.76 dm 2 Cho biết trong cả hai trường hợp, mặt thoáng của bể đều thống với khí trời. Giải 1. Bể chứa dựng đứng : Ta có :    .d 2  . 2,4 2  4,524  m 2  4 4 Thời gian tháo hết nước trong bể : 2. .H 2.4,524.6 T   473,8  s  7 53,8 m.. 2 gh 0,6.1,76.10  2 2.9,81.6 2. Bể chứa nằm ngang :  0  .dh T 2  2  Q r 4 H .r  mw 2 g .r  8H mw 2 gh .dx   Q 2 0 0    2  2 d  cos x  cos x  2  0 2 H .r. sin x. m.w 2 g .r. cos x 8H mw 2 gh 8.6.1,2 0,6.1,76.10  2 2.9,81.1,2 cos x dx  4 H .r 0  mw 2 g .r  2 sin xdx cos x 0  2 1214  s  1844 Page 21 of 24 Cơ Học Lưu Chất BÀI TẬP CHƯƠNG VI DÒNG CHẢY ỔN ĐỊNH, ĐỀU, CÓ ÁP TRONG ỐNG DÀI Bài 6.1 Xác định lưu lượng chảy từ bể chứa A qua bể chứa B. Ống gang trong điều kiện bình thường. Giải H L Ống gang bình thường : n = 0,0125 Modul lưu lượng : Lưu lượng : Q  K J  K K  .d n.4 8 5 3  3 3,14.0,2 8 0,0125.4 3 5  0,314 m 3 / s 3  Lưu lượng : Q K H 20  15 0,314. 0,0241 m 3 24,1  l / s  L 1000   Bài 6.2 Xác định cột nước H cần thiết để dẫn từ bể A qua bể B lưu lượng Q = 50L/s. Kích thước đường ống xem ở bài 1. Giải Từ bài 1 ta có : K = 0,314 m3/s Cột nước : H  Q2 K2 L 0,05 2 0,314 2 1000 21,5m Bài 6.3 Xác định đường kính d của một ống thép mới để dẫn lưu lượng Q = 200L/s dưới cột nước tác dụng H = 10m. chiều dài ống L = 500m Giải Modul lưu lượng : Q  K J  K  Q L 500 Q 0,2 1,414 m 3 / s H 10 J   Ống sạch : n = 0,011 Đường kính : K   .d n.4 8 5 3 3  K  d  n    3 8 4 5 8 1,414    0,011  3,14   3 8 4 5 8 0,325  m  325mm Bài 6.4 Một lưới phân phối có sơ đồ và các số liệu cho ở hình vẽ. Cột nước tự do ở cuối các đường ống h  5m. Ống gang bình thường. Các số ở trong hình tam giác chỉ cao trình mặt đất tại các điểm. (Hình 6.4) Yêu cầu : 1. Tính đường kính cho tất cả mạng chính và phụ. Page 22 of 24 Cơ Học Lưu Chất 2. Tính chiều cao tháp chứa. 3. Vẽ đường đo áp cho đường ống ABCDE. Giải Theo định nghĩa về đường ống chính ta chọn tuyến ống ABCDE và điểm E có cao trình không bé hơn so với các điểm khác. Ngoải ra chiều dài của tuyếnlà dài nhất. Các đường ống còn lại được coi là ống nhánh. 1. Chọn đường kính và tính độ cao cho mạng ống chính. Điểm  Đoạn ống L (m) Q (l/s) d (mm) 2 K (l/s) hd (m) (m/s) AB 500 65 300 0,92 1,042 1005,18 2,18 BC 600 50 250 1,02 1,028 618,15 4,03 A B 24,62 C 20,59 CD 300 15 150 0,85 1,0525 158,31 2,83 DE 500 5 100 0,64 1,098 53,69 4,76 D E Độ cao đo áp 26,8 17,76 13 2. Chiều cao tháp chứa nước. Sau khi tính cho các đường ống chính ABCDE, ta được cột nước đo áp tại các đoạn ống nhánh còn lại (các điểm B, C, D) đều lớn hơn cột nước đo áp tại cuối đoạn đó (F, K, M, N). Do đó có thể xem việc chọn ABCDE làm ống chính là hợp lý. h = 26,8 – 10 = 16,8 (m) 3. Chọn đường kính và độ cao cho nhánh. Cao trình các điểm đo L Q K2.10-5 hd d Nhánh áp (m) (l/s) (l/s) (m) (mm) Đầu ống Cuối ống BM 300 5 24,62 15 9,62 0,865 100 DN 700 10 14,62 15 9,62 8,065 125 CO 250 15 20,59 14 6,59 10,044 150 DP 400 10 17,76 12 5,76 14,285 125 Page 23 of 24 Cơ Học Lưu Chất Page 24 of 24 This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Tìm kiếm

Tìm kiếm

Chủ đề

Lý thuyết Dow Đồ án tốt nghiệp Giải phẫu sinh lý Atlat Địa lí Việt Nam Trắc nghiệm Sinh 12 Bài tiểu luận mẫu Tài chính hành vi Hóa học 11 Mẫu sơ yếu lý lịch Thực hành Excel Đề thi mẫu TOEIC Đơn xin việc adblock Bạn đang sử dụng trình chặn quảng cáo?

Nếu không có thu nhập từ quảng cáo, chúng tôi không thể tiếp tục tài trợ cho việc tạo nội dung cho bạn.

Tôi hiểu và đã tắt chặn quảng cáo cho trang web này

Từ khóa » Bài Tập Cơ Lưu Chất Trà Thanh Phương