Bài Tập Toán Lớp 5 Dạng Toán Công Việc Chung - 123doc

phải biết trong một giờ cả hai người cùng làm được mấy phần của công việc - Muốn biết trong một giờ cả hai người cùng làm được mấy phần của công việc ta phải làm gì?. Ta tính trong 1 giờ

Trang 1

TOÁN CÔNG VIỆC CHUNG

1 Một số đặc điểm của dạng toán về công việc làm đồng thời:

- Trong mỗi bài toán thường có một đại lượng không đổi như công việc cân làm xong, nhưquãng đường cần đi, thể tích bể nước….Do đó, khi giả ta cần quy ước đại lượng không đổi

đó làm đơn vị

- Trong dạng toán này thường có vấn đề “Làm chung, làm riêng” Trong các bài toán đó,giá trị phải tìm có thể không phụ thuộc vào một đại lượng nào đó

2 Một số kiểu bài toán về “Công việc làm đồng thời”.

Sau đây tôi trình bày một số kiểu bài về dạng toán về công việc làm đồng thời và tómtắthệ thống câu hỏi, quy trình giải, bài giải (trong đó có một số bai tôi trình bày theo haicách giải)

2.1 Kiểu bài: Biết thời gia làm riêng một công việc, yêu cầu tìm thời gian làm công việc

chung đó.

2.1.1 Tóm tắt quy trình giải:

Bước 1: Quy ước một đại lượng (như công việc cần hoàn thành, quãng đường cần đi, thể

tích của bể nước,…) là đơn vị

Bước 2: Tính số phần công việc làm riêng trong một giờ.

Bước 3: Tính số phần công việc làm chung trong một giờ.

Bước 4: Tính thời gian làm chung để hoàn thành công việc đó.

(Đây là tóm tắt các bước giải của một bài toán cơ bản còn căn cớ vào tưng bài toán cụ thể

để có thể phân tích đưa về dạng cơ bản giúp học sinh giải được tốt hơn

2.1.2 Một số bài tập cụ thể:

+Bài tập 1.

Hai người thợ nhận làm chung một công việc người thứ nhất làm một mình thì hoànthành xong công việc trong 4 giờ Người thợ thứ hai làm một mình thi hoàn thành xongcông việc đó trong 6 giờ Hỏi cả hai người thợ cùng làn chung thì hoàn thành công việc đómất bao lâu?

a/ Tóm tắt hệ thống câu hỏi:

- Bài toán cho biết gì? (Thời gian của mỗi người làm hoàn thành một công viẹc chung)

- Bài toán hỏi gì? (Thời gian cả hai ngươnì cùng làm chung hoàn thành xong công việc đó).

Trang 2

- Để biết được cả hai người thợ cùng làm chung thì hoàn thành xong công việc đó mất bao

lâu, thì ta cần phải biết gì? (phải biết trong một giờ cả hai người cùng làm được mấy phần của công việc)

- Muốn biết trong một giờ cả hai người cùng làm được mấy phần của công việc ta phải làm

gì? (Ta tính trong 1 giờ mỗi người làm được mấy phần công việc)

- Để tính được trong một giờ mỗi người làm được mấy phần của công việc, ta làm thế nào?

(Ta lấy công việc càn hoàn thành chia cho thời gian mỗi người làm hoàn thành công việc đó).

b/ Quy trình giải:

Bước 1: Quy ước công việc cần làm hoàn thành là đơn vị.

Bước 2: Tìm trong một giờ người thứ nhất làm một mình thì được mấy phần của công việc.

- Tính trong một giờ người thợ thứ hai làm một mình thì được mấy phần công việc

Bước 3: Tính trong 1 giờ cùng làm thì được mấy phần của công việc.

Bước 4 Tính được thời gian cả hai thợ cùng làm xong công việc, ta lấy công việc cần hoàn

thành (đơn vị) chia cho số phần công việc cả hai người cùng làm trong một giờ

Bài giải:

* Ta quy ước công việc cần hoàn thành là đơn vị

Trong 1 giờ người thợ thứ nhất làm một mình được:

4

1 4 :

1  ( công việc)

Trong 1 giờ người thợ thứ hai làm một mình được:

6

1 6 :

1  ( công việc)

Trong 1 giờ cả hai người cùng làm được:

12

5 6

1 4

1   ( công việc)Thời gian để hai người cùng làm chung hoàn thành xong công việc đó là:

5

12 12

5 :

1  ( giờ)

5

12 giờ = 2giờ 24 phútĐáp số: 2giờ 24 phút

Cách 2: Ta thấy 12 là số nhỏ nhất vừa chia hết cho 4 vừa chia hết cho 6 Vậy ta biểu thị số

công việc đó thành 12 phần bằng nhau thì:

Trang 3

Trong 1 giờ người thợ thứ hai làm một mình được: 12 : 6  2 (phần)

Trong 1 giờ cả hai người cùng làm được: 3  2  5 (Phần)

Thời gian để hai người cùng làm chung hoàn thành xong công việc đó là:

4 , 2 5 :

12  (giờ)

2,4 giờ = 2 giờ 24 phút Đáp số: 2 giờ 24 phút

+ Bài tập 2:

Người thợ thứ nhất đi từ á đến B hêt7 giờ Người thợ thứ hai đi từ B về A thì hết 5 giờ.Hổi nếu cùng một lúc, người thợ thứ nhất đi từ A và người thợ thứ hai đi từ B thì sau baolâu họ gặp nhau?

a/ Tóm tắt hệ thống câu hỏi:

- Bài toán cho biết gì? (Thời gian của mỗi người đi hết quãng đường AB)

- Bài toán hỏi gì? (Nếu cùng một lúc người thứ nhất đi từ A đến B và người thứ hai đi từ B

về A thì sau bao lâu họ gặp nhau)

- Để biết thời gian lúc họ xuất phát đến lúc gặp nhau thì ta phải biết gì? (ta phải biết trongmột giờ cả hai cùng đi người thứ nhất đi từ A và người thứ hai đi từ B thì được bao nhiêuphần quãng đường AB)

- Để biết được trong 1 giờ cả hai người cùng đi thì được bao nhiêu phần quãng đường AB

ta phải biết gì? (Phải biết trong 1 giờ mỗi người đi được bao nhiêu phần Quãng đường AB)

- Để tính được trong 1 giờ mỗi người đi được bao nhiêu phần quãng đường AB, ta làm thếnào? (Lấy quãng đường AB (đơn vị) chia cho thời gian mỗi người đi hết quãng đường AB)

b/ Quy trình giải:

Bước 1: Ta quy ước quãng đường AB là đơn vị.

Bước 2: Tính trong 1 giờ người thứ nhất đi được bao nhiêu phần quãng đường AB.

Tính trong 1 giờ người thứ hai đi được bao nhiêu phần quãng đường AB

Bước 3: Tính trong 1 giờ cả hai người cùng đi (người thứ nhất đi từ A đến B và người thứ

hai đi từ B về A) Thì được bao nhiêu phần quãng đường AB

Bước4: Tính thời gian hai người gặp nhau.

c/ Bài giải:

Ta quy ước quãng đường AB là đơn vị

Trang 4

Trong 1 giờ người thứ nhất đi được:

7

1 7 :

1  ( quãng đường AB)

Trong 1 giờ người thứ hai đi được:

5

1 5 :

1  ( quãng đường AB)Trong 1 giờ cả hai người cùng đi người thứ nhất đi từ A đến B và người thứ hai đi từ B về

A thì đi được:

35

12 5

1 7

1   (quãng đường AB)Thời gian cả hai người cùng đi đến lúc họ gặp nhau là:

Người thứ nhất đi từ A đến B đi được: 35 : 7  5 (phần)

Người thứ hai đi từ B về A đi được: 35 : 5  7 (phần)

Trong 1 giờ cả hai người cùng đi người thứ nhất đi từ A đến B và người thứ hai

đi từ B về A thì đi được: 7  5  12 (phần)

Thời gian cả hai người cùng đi đến lúc họ gặp nhau là:

12

35 12 :

Biết rằng vòi thứ nhất chảy một mình mất 8 giờ thì đấy hồ, vòi thứ hai chảy một mình mất

6 giờ thì đầy hồ, vòi thứ ba tháo ra một mình mất 4giờ thì hồ cạn Hồ đang cạn, nếu mở cả

3 vòi cùng một lúc thì mất bao hồ đầy?

=> Hướng dẫn giải (cách 1):

Trang 5

- Bài toán cho biết gì? (Thời gian vòi thứ nhất, vòi thứ hai chảy một mình thì đầy hồ và vòithứ 3 tháo cạn nước hồ).

- Bài toán hỏi gì? Tính thời gian nước vào đầy hồ nếu mở cả 3 vòi cùng một lúc)

- Để biết được nếu mở cả 3 vòi cùng một lúc thì mất bao lâu hồ đầy, ta phải biết gì? (taphải biết trong 1 giờ cùng mở cả 3 vòi thì nước dâng lên được mấy phần của hồ)

- Để biết trong 1 giờ cùng mở cả 3 vòi thì nước dâng lên được mấy phần của hồ thì ta phảilàm thế nào? (ta phải tính trong 1 giờ mỗi vòi thứ nhát và vòi thứ hai chảy vào được mấyphần của hồ vào vòi thứ ba chỷ ra hết mấy phần của hồ)

Bài giải:

Ta quy ước thể tích của hồ nước là đơn vị.

Trong 1 giờ vòi thứ nhất chảy vào được:

8

1 8 :

1  (hồ nước)

Trong 1 giờ vòi thứ hai chảy vào được:

6

1 6 :

1  (hồ nước)

Trong 1 giờ vòi thứ ba tháo ra hết :

4

1 4 :

1  (hồ nước)Trong 1 giờ cả 3 vòi cùng chảy thì lượng nước trong hồ tăng lên:

24

1 4

1 6

1 8

1  ( giờ)Đáp số 24 giờ

=> Hướng dẫn học sinh giải (cách 2)

* Hệ thống câu hỏi tương tự cách 1 nhưng có khác nhau là: ở cách 1 thì ta quy ước thể tíchcủa hồ nước đó là đơn vị còn ở cách hai thì ta chia thể tích của hồ nước đó thánh các phầnbằng nhau và bằng số nhỏ nhất chia hết cho cá thời gian mỗi vòi chảy vào hoặc tháo ra đầy

bể hoặc cạn bể Sau đó quy trình giải như cách 1

Bài giải:

Ta thấy 24 là số nhỏ nhất vừa chia hết cho cả 4; 6 và 8 Vậy nếu chia thể tích hồ nước đóthành 24 phần bằng nhau thì:

Trang 6

Trong 1 giờ vòi thứ nhất chảy vào được: 24 : 8  3 (phần hồ nước)

Trong 1 giờ vòi thứ hai chảy vào được: 24 : 6  4 (phần hồ nước)

Trong 1 giờ vòi thứ ba tháo ra hết : 24 : 4  6 (phần hồ nước)

Trong 1 giờ cả 3 vòi cùng chảy thì lượng nước trong hồ tăng lên:

3  4 6  1 (phần hồ nước)Thời gian cả 3 vòi cùng chảy đầy hồ là: 24 : 1  24 ( giờ)

Đáp số 24 giờ

+ Bài tập 4: (Giao lưu toán tuổi thơ Quỳnh Lưu năm học 07 – 08)

Để quét xong sân trường, một mình lớp 5A cần 15 phút, một mình lớp 5B cần 20 phút,một mình lớp 5C cần 30 phút, một mình lớp 5D cần 40 phút Hỏi cả 4 lớp cùng quýet trong

4 phút có xong không? Vì sao?

a/Tóm tắt hệ thống câu hỏi:

- Để biết cả 4 lớp cùng quét trong 7 phút có xong không thì ta phải làm gì? (Ta phải tínhxem trong 1 phút cả lớp cùng quét được bao nhiêu phần của sân trường)

- Để biết được trong 1 phút cả 4 lớp cùng quét được bao nhiêu phần của sân trường ta làmthế nào? (Ta tính trong 1 phút mỗi lớp quét được mấy phần của sân trường)

- Để biết trong 1 phút mỗi lớp quét được mấy phần của sân trường ta làm thế nào?

(ta lấy đơn vị “sân trường cần quét” chia cho thời gian mỗi lớp một mình quét xong sântrường đó)

b/ Hướng dẫn các bước giải:

Bước 1: Quy ước sân trường cần quét xong làm đơn vị.

Bước 2: Tính xem 1 phút mỗi lớp quét được mấy phần của sân trường.

Bước 3: Tính xem trong 1 phút cả 4 lớp cùng quét được mấy phần của sân trường.

Bước 4: Giả sử cả 4 lớp cùng quét xong sân trường trong 7 phút và tính trong 1 phút cả 4

lớp cùng quét được mấy phần của sân trường

Bước 5: So sánh số phần công việc làm trong 1 phút giữa thực tế với dự kiến và rút ra kếtluận

Bài giải:

Quy ước sân trường là đơn vị, ta có:

Trang 7

Trong 1 phút lớp 5A quét được:

15

1 15 :

1  (Sân trường)

Trong 1 phút lớp 5B quét được:

20

1 20 :

1  (Sân trường)

Trong 1 phút lớp 5C quét được:

30

1 30 :

1  (Sân trường)

Trong 1 phút lớp 5D quét được:

40

1 40 :

1  (Sân trường)

Trong 1 phút cả 4 lớp cùng quét được:

40

7 40

1 30

1 20

1 15

1  (Sân trường)

Ta thấy :

7

1 49

7 40

7   Vậy trong 7 phút cả 4 lớp cùng sẽ quét xong sân trường

* Hướng dẫn học sinh giải (cách 2):

Hề thống câu hỏi tương tự cách 1 nhưng có khác nhau là: ở cách 1 tan quy ước sân trường

là đưn vị còn ở cách 2 ta chia sân trường thành các phần bằng nhau và bằng số nhỏ nhấtchia hết cho các thời gian mỗi lớp một mìmh quét xong sân trường Sau đó quy trình giảinhư cách 1

Bài giải:

Ta biểu thị sân trường được chia thành 120 phần bằng nhau( vì 120 là số bé nhất chia hết

cả 15; 20; 30; 40) Vậy:

Trong 1 phút lớp 5A quét được: 120 : 15  8(phần sân trường)

Trong 1 phút lớp 5B quét được: 120 : 20  6(phần sân trường)

Trong 1 phút lớp 5C quét được: 120 : 30  4(phần sân trường)

Trong 1 phút lớp 5D quét được: 120 : 40  3(phần sân trường)

Trong 1 phút cả 4 lớp cùng quét được: 8  6  4  3  21(Sân trường)

* Giả sử cả bốn lớp cùng quét một lúc xong sân trường hết 7 phút thì trong 1 phút

Cả lớp cùng quét được :

7

120 7 :

120  (Phần sân trường)

Trang 8

7

120 7

147

12   Như vậy, thực tế trong 1 phút cả 4 lớp cùng quét được sô phần nhiềuhơn so với dự kiến Do đó, Trong 7 phút cả bốn lớp cùng quét sẽ xong sân trường

* Lưu ý: Bài này có thể tính xem cả 4 lớp cùng quét xong sân sân trường trong bao lâu

sau đó so sánh với thời gian dự kiến rồi rút ra kết luận.

3 học sinh lớp 5C, 3

10học sinh lớp 5D cùng quét thì sau bao lâu sẽ xong sântrường?

* Hướng dẫn học sinh giải:

- Bài toán cho biết gì? (Thời gian mỗi lớp quét xong một sân trường)

- Bài toán hỏi gì? (Thời gian của 3

4 học sinh lớp 5A, 4

5 học sinh lớp 5B, 2

3 học sinh lớp 5C,3

10học sinh lớp 5D cùng quét xong sân trường)

(4 nhóm học sinhcủa 4 lớp) cùng quét thì sau bao lâu sẽ xong sân trường thí ta phải biết gì?

(ta phải biết 1 giờ bốn nhóm học sinh của 4 lớp cùng quét được bao nhiêu phần của sântrường)

- Để biết trong 1 giờ bốn nhóm học sinh của 4 lớp cùng quét được bao nhiêu phần của sântrường thì ta phải biết gì? ( ta phải biết trong 1 giờ mỗi nhóm làm được mấy phần của sântrường )

- Để biết trong 1 giờ mỗi nhóm làm được mấy phần của sân trường ta phải biết gì?

(ta phải biết trong 1 giờ mỗi lớp làm được mấy phần của sân trường).

- Để biết trong 1 giờ mỗi lớp làm được mấy phần của sân trường ta làm thế nào?

(ta lấy đơn vị (sân trường cần quét) chia cho thời gian mỗi lớp quét xong sân trường đó).

Bài giải:

Trang 9

Ta quy ước sân trường là đơn vị Ta có:

Trong 1 phút cả lớp 5A quét được:

30

1 30 :

3 30

1   (Sân trường)

Trong 1 phút cả lớp 5B quét được:

24

1 24 :

4 24

1   (Sân trường)

Trong 1 phút cả lớp 5C quét được:

40

1 40 :

2 40

3 36

1 60

1 30

1 40

1     (Sân trường)

Thời gian trườnng nhóm đó cùng quét xong sân trường: 12

12

1 :

1  ( phút)Đáp số: 12phút

+ Bài tập 6:

Bốn tổ học sinh được phân công làm vệ sinh sân trường Nếu chỉ có tổ 1, tổ 2 và tổ 3 cùnglàm thì sau 12 phút sẽ làm xong Nếu chỉ có tổ 2, tổ 3 và tổ 3 cùng làm thì sau 15 phút sẽlàm xong Nếu chỉ có tổ 1, tổ 4 cùng làm thì sau 20 phút sẽ làm xong Hỏi nếu tất cả cùnglàm thì sau bao lâu sẽ xong?

=> Hướng dẫn học sinh cách giải ( cách 1)

- Bài toán cho biết gì? ( 4 tổ học sinh được phân công làm vệ sinh sân trường)

- Bài toán hỏi gì? (nếu tất cả cùng làm thì sau bao lâu sẽ xong)

- Để biết được tấ t cả 4 tổ cùng quét thì sau bao lâu sẽ xong, ta phải biết gì?

(phải biết trong 1 phút cả 4 tổ là được được bao nhiêu phần của sân trường)

Trang 10

- Để biết được trong 1 phút cả 4 tổ quét được bao nhiêu phần của sân trường, ta phải biết gì?

(phải biết trong 1 phút hai lần cả 4 tổ cùng quét được bao nhiêu phần của sân trường)

- Để biết trong 1 phút hai lần cả 4 tổ cùng quét được bao nhiêu phần của sân trường, ta

phải biết gì?(phải biết trong 1 phút cả tổ 1, tổ 2 và tổ 3 cùng quét thì được bao nhiêu phần của sân trường; trong 1 phút cả tổ 2, tổ 3 và tổ 4 cùng quét thì được bao nhiêu phần của sân trường; trong 1 phút cả tổ 1 và tổ 4 cùng quét thì được bao nhiêu phần của sân trường)

Bài giải:

=>Hướng dẫn học sinh giải (cách 1):

Ta quy ước sân trường là đơn vị.

Trong 1 phút cả tổ 1, tổ 2 và tổ 3 cùng quét được:

12

1 12 :

1  (sân trường)

Trong 1 phút cả tổ 2, tổ 3 và tổ 4 cùng quét được:

15

1 15 :

1  (sân trường)

Trong 1 phút tổ 1 và tổ 4 cùng quét được:

20

1 20 :

1  (sân trường)

Trong 1 ph út 2 l ần cả 4 tổ cùng quét được:

5

1 20

1 15

1 12

1    (sân trường)

Trong 1 phút cả 4 tổ cùng quét được:

10

1 2 : 5

1  (sân trường)

Thời gian cả 4 tổ cùng chung quét xong sân trường là: 10

10

1 :

1  ( phút )Đáp số: 10phút

=>Hướng dẫn học sinh giải (cách 2)

Ta thấy 60 là số nhỏ nhất vừa chia hết cho cả 12; 15 và 20 nên ta biểu thị sân trường cầnquét xong là 60 phần bằng nhau) Do đó, ta thực hiện tính như sau:

- Trong 1 phút cả tổ 1, tổ 2 và tổ 3 cùng quét được: 60 : 12  5 ( phần)

- Trong 1 phút cả tổ 2, tổ 3 và tổ 4 cùng quét được: 60 : 15  4 ( phần)

- Trong 1 phút tổ 1 và tổ 4 cùng quét được: 06 : 20  3 ( phần)

- Trong 1 ph út 2 lần cả 4 tổ cùng làm được : 5  4  3  12 ( phần )

- Trong 1 ph út cả 4 tổ cùng làm được: 12 : 2  6 ( phần)

Trang 11

10 6 :

60  ( phút)Đáp số:10 phút

Bài tập 7:

Ba máy cày cùng cày trên một cánh đồng Nếu chỉ một mình thì: máy thứ nhất cày xong

cả cánh đồng trong 4 giờ, máy thứ hai cày xong cánh đồng trong 5 giờ, máy thứ ba càyxong cánh đồng trong 8 giờ Song thực tế trong 2 giờ đầu chỉ có máy thứ nhất và máy thứhai làm việc, sau đó hai máy này nghỉ và máy thứ ba làm đến hết Hãy tính xem máy thứ

ba phải cày thêm bao nhiêu lâu nữa mới xong cánh đồng?

=> Hướng dẫn học sinh giải ( cách 1)

- Bài toán cho biết gì? (Thời gian mỗi máy cày xong cánh đồng, biết thời gian máy thứnhất và máy thứ hai cùng làm trong hai giờ sau đó nghỉ, máy thứ ba tiếp tục làm đến hết)

- Bài toán hỏi gì? (Thời gian máy thứ ba tiếp tục cày đến khi xong cánh đồng)

- Muốn biết thời gian máy thứ ba tiếp tục cày đến khi xong cách đồng, thì ta phải biết gì?(biết số phần công việc máy thứ ba phải cày và số phần công việc máy thứ ba làm trong 1giờ)

- Muốn biết số phần công việc máy thứ ba phải cày, ta phải biết gì? (biết số phần công việcmáy thứ nhất và máy thứ hai cùng làm trong 2 giờ)

- Để biết được số phần công việc máy thứ nhất và máy thứ hai cùng làm trong 2 giờ ta phảibiết gì? (phải biết số phần công việc máy thứ nhất và máy thứ hai cùng làm trong 2 giờ)

- Để biết số phần công việc máy thứ nhất và máy thứ hai cùng làm trong 2 giờ thì ta phảibiết gì? (số phần công việc trong 1giờ mỗi máy làm được)

Bài giải:

- Quy ước cánh đồng cần cày xong là đơn vị.

Mỗi giờ máy thứ nhất cày được: 1 : 4  0 , 25 (cánh đồng)Mỗi giờ máy thứ hai cày được: 1 : 5  0 , 2 (cánh đồng)Mỗi giờ cả hai máy đó cùng cày được: 0 , 25  0 , 2  0 , 45(cánh đồng)Trong hai giờ cả hai máy đó cày được: 0 , 45  2  0 , 9(cánh đồng)

Số phần đất máy thứ ba phải cày là:1  0 , 9  0 , 1 (cánh đồng)Mỗi giờ máy thứ ba cày được:1 : 8  0 , 125 (cánh đồng)

Từ khóa » Bài Tập Công Việc Chung Lớp 5