Bài Toán 5: Dạng Vô định Các Hàm Lượng Giác. | Tăng Giáp
Có thể bạn quan tâm
Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức
Đăng nhập
Tăng Giáp Trang chủ Diễn đàn > TOÁN HỌC > LỚP 11 > Chủ đề 4. GIỚI HẠN > Bài toán 5: Dạng vô định các hàm lượng giác.Thảo luận trong 'Chủ đề 4. GIỚI HẠN' bắt đầu bởi moon, 5/12/18.
-
moon Thành viên cấp 2 Thành viên BQT
Tham gia ngày: 2/10/14 Bài viết: 160 Đã được thích: 46 Điểm thành tích: 28Phương pháp: Ta sử dụng các công thức lượng giác biến đổi về các dạng sau: + $\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{x}{{\sin x}}$ $ = 1$, từ đó suy ra $\mathop {\lim }\limits_{x \to 0} \frac{{\tan x}}{x}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{x}{{\tan x}}$ $ = 1.$ + Nếu $\mathop {\lim }\limits_{x \to {x_0}} u(x) = 0$ $ \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin u(x)}}{{u(x)}} = 1$ và $\mathop {\lim }\limits_{x \to {x_0}} \frac{{\tan u(x)}}{{u(x)}} = 1.$ Ví dụ 13. Tìm các giới hạn sau: 1. $A = $ $\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {\cos x} – \sqrt[3]{{\cos x}}}}{{{{\sin }^2}x}}.$ 2. $B = $ $\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2x} – \sqrt[3]{{1 + 3x}}}}{{1 – \sqrt {\cos 2x} }}.$ 1. Ta có: $A = $ $\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {\cos x} – 1}}{{{x^2}}}\frac{{{x^2}}}{{{{\sin }^2}x}}$ $ + \mathop {\lim }\limits_{x \to 0} \frac{{1 – \sqrt[3]{{\cos x}}}}{{{x^2}}}.\frac{{{x^2}}}{{{{\sin }^2}x}}.$ Mà: $\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {\cos x} – 1}}{{{x^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{\cos x – 1}}{{{x^2}}}.\frac{1}{{\sqrt {\cos x} + 1}}$ $ = – \frac{1}{4}.$ $\mathop {\lim }\limits_{x \to 0} \frac{{1 – \sqrt[3]{{\cos x}}}}{{{x^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{1 – \cos x}}{{{x^2}}}$$.\frac{1}{{\sqrt[3]{{{{\cos }^2}x}} + \sqrt[3]{{\cos x}} + 1}}$ $ = \frac{1}{6}.$ Do đó: $A = – \frac{1}{4} + \frac{1}{6} = – \frac{1}{{12}}.$ 2. Ta có: $B = $ $\mathop {\lim }\limits_{x \to 0} \frac{{\frac{{\sqrt {1 + 2x} – \sqrt[3]{{1 + 3x}}}}{{{x^2}}}}}{{\frac{{1 – \sqrt {\cos 2x} }}{{{x^2}}}}}.$ Mà: $\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2x} – \sqrt[3]{{1 + 3x}}}}{{{x^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2x} – (1 + x)}}{{{x^2}}}$ $ + \mathop {\lim }\limits_{x \to 0} \frac{{(x + 1) – \sqrt[3]{{1 + 3x}}}}{{{x^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{ – 1}}{{\sqrt {1 + 2x} + x + 1}}$ $ + \mathop {\lim }\limits_{x \to 0} \frac{{x + 3}}{{{{(x + 1)}^2} + (x + 1)\sqrt[3]{{1 + 3x}} + \sqrt[3]{{{{\left( {1 + 3x} \right)}^2}}}}}$ $ = – \frac{1}{2} + 1 = \frac{1}{2}.$ $\mathop {\lim }\limits_{x \to 0} \frac{{1 – \sqrt {\cos 2x} }}{{{x^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{1 – \cos 2x}}{{{x^2}}}$$.\frac{1}{{1 + \sqrt {\cos 2x} }}$ $ = 1.$ Vậy $B = \frac{1}{2}.$ Ví dụ 14. Tìm các giới hạn sau: 1. $A = \mathop {\lim }\limits_{x \to 0} {x^3}\sin \frac{1}{{{x^2}}}.$ 2. $B = $ $\mathop {\lim }\limits_{x \to + \infty } \left( {2\sin x + {{\cos }^3}x} \right)\left( {\sqrt {x + 1} – \sqrt x } \right).$ 1. Ta có: $0 \le \left| {{x^3}\sin \frac{1}{{{x^2}}}} \right| \le {x^3}.$ Mà $\mathop {\lim }\limits_{x \to 0} {x^3} = 0$ $ \Rightarrow \mathop {\lim }\limits_{x \to 0} \left| {{x^3}\sin \frac{1}{{{x^2}}}} \right| = 0$ $ \Rightarrow \mathop {\lim }\limits_{x \to 0} {x^3}\sin \frac{1}{{{x^2}}} = 0.$ Vậy $A = 0.$ 2. Ta có: $B = \mathop {\lim }\limits_{x \to + \infty } \frac{{2\sin x + {{\cos }^3}x}}{{\sqrt {x + 1} + \sqrt x }}.$ Mà $0 \le \left| {\frac{{2\sin x + {{\cos }^2}x}}{{\sqrt {x + 1} + \sqrt x }}} \right|$ $ \le \frac{3}{{\sqrt {x + 1} + \sqrt x }} \to 0$ khi $x \to + \infty .$ Do đó: $B = 0.$
Bài viết mới nhất
- Hàm số liên tục trên một tập hợp05/12/2018
- Chứng minh phương trình có nghiệm dựa vào tính liên tục của hàm số05/12/2018
- Xét tính liên tục của hàm số tại một điểm05/12/2018
- Dạng toán 2. Tìm giới hạn của dãy số dựa vào các định lý và các giới hạn cơ bản.05/12/2018
- Dạng toán 1. Tìm giới hạn bằng định nghĩa.05/12/2018
Chia sẻ trang này
Tên tài khoản hoặc địa chỉ Email: Mật khẩu: Bạn đã quên mật khẩu? Duy trì đăng nhập Đăng nhậpThống kê diễn đàn
Đề tài thảo luận: 6,071 Bài viết: 12,735 Thành viên: 18,036 Thành viên mới nhất: duychien.saigonappChủ đề mới nhất
- [8+] Phân tích bài thơ Đất nước... Tăng Giáp posted 6/8/20
- Hướng dẫn viết dàn ý bài thơ... Tăng Giáp posted 6/8/20
- [8+] Phân tích bài kí Ai đã đặt... Tăng Giáp posted 6/8/20
- [8+] Phân tích truyện Vợ chồng... Tăng Giáp posted 6/8/20
- [8+] Phân tích bài thơ tây tiến... Tăng Giáp posted 6/8/20
Từ khóa » Giới Hạn Hàm Số Lượng Giác Dạng Vô định
-
Giới Hạn Của Hàm Số Dạng Vô định
-
Giới Hạn Của Hàm Số Dạng Vô định 0/0
-
Các Dạng Vô định - Lý Thuyết Toán
-
Giới Hạn Hàm Số - Cách Xử Lý Các Dạng Vô định
-
Giới Hạn Dạng 0/0 Và Giới Hạn Hàm Số Lượng Giác – Môn Toán Lớp 11
-
Cách Giải Các Dạng Vô định Khi Tính Giới Hạn Hàm Số - Tin Công Chức
-
BÀI TẬP PHẦN GIỚI HẠN HÀM SỐ DẠNG VÔ ĐỊNH
-
[PDF] Về Vấn đề Giới Hạn Hàm Số, Các Dạng Vô định Và Cách Khử Dạng Vô ...
-
Toán 11: Giới Hạn Hàm Lượng Giác Và Dạng Vô định 0/0 - ArabXanh
-
Phương Pháp Khử Dạng Vô định Trong Giới Hạn Hàm Số (Lý Thuyết, Ví ...
-
Giới Hạn Hàm Số Lượng Giác Dạng Vô định - 123doc
-
Các Dạng Bài Tìm Giới Hạn Hàm Số Dạng Vô định Có đáp án
-
Bài Tập Dạng Vô định - Giáo Án, Bài Giảng
-
Các Công Thức Tính Giới Hạn Của Hàm Số Lượng Giác