Bài Toán 5: Dạng Vô định Các Hàm Lượng Giác. | Tăng Giáp

Tăng Giáp
  • Home
  • Forums New posts Search forums
  • Lớp 12 Vật Lí 12
  • What's new Featured content New posts New profile posts Latest activity
  • Members Current visitors New profile posts Search profile posts
Đăng nhập Có gì mới? Tìm kiếm

Tìm kiếm

Everywhere Threads This forum This thread Chỉ tìm trong tiêu đề Note By: Search Tìm nâng cao…
  • New posts
  • Search forums
Menu Đăng nhập Install the app Install How to install the app on iOS

Follow along with the video below to see how to install our site as a web app on your home screen.

Note: This feature may not be available in some browsers.

  • Home
  • Forums
  • Lớp 11
  • Toán học 11
  • Chủ đề 4. GIỚI HẠN
You are using an out of date browser. It may not display this or other websites correctly.You should upgrade or use an alternative browser. Bài toán 5: Dạng vô định các hàm lượng giác.
  • Thread starter Thread starter moon
  • Ngày gửi Ngày gửi 5/12/18
moon

moon

Thành viên cấp 2
Thành viên BQT Phương pháp: Ta sử dụng các công thức lượng giác biến đổi về các dạng sau: + $\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{x}{{\sin x}}$ $ = 1$, từ đó suy ra $\mathop {\lim }\limits_{x \to 0} \frac{{\tan x}}{x}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{x}{{\tan x}}$ $ = 1.$ + Nếu $\mathop {\lim }\limits_{x \to {x_0}} u(x) = 0$ $ \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin u(x)}}{{u(x)}} = 1$ và $\mathop {\lim }\limits_{x \to {x_0}} \frac{{\tan u(x)}}{{u(x)}} = 1.$ Ví dụ 13. Tìm các giới hạn sau: 1. $A = $ $\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {\cos x} – \sqrt[3]{{\cos x}}}}{{{{\sin }^2}x}}.$ 2. $B = $ $\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2x} – \sqrt[3]{{1 + 3x}}}}{{1 – \sqrt {\cos 2x} }}.$ 1. Ta có: $A = $ $\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {\cos x} – 1}}{{{x^2}}}\frac{{{x^2}}}{{{{\sin }^2}x}}$ $ + \mathop {\lim }\limits_{x \to 0} \frac{{1 – \sqrt[3]{{\cos x}}}}{{{x^2}}}.\frac{{{x^2}}}{{{{\sin }^2}x}}.$ Mà: $\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {\cos x} – 1}}{{{x^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{\cos x – 1}}{{{x^2}}}.\frac{1}{{\sqrt {\cos x} + 1}}$ $ = – \frac{1}{4}.$ $\mathop {\lim }\limits_{x \to 0} \frac{{1 – \sqrt[3]{{\cos x}}}}{{{x^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{1 – \cos x}}{{{x^2}}}$$.\frac{1}{{\sqrt[3]{{{{\cos }^2}x}} + \sqrt[3]{{\cos x}} + 1}}$ $ = \frac{1}{6}.$ Do đó: $A = – \frac{1}{4} + \frac{1}{6} = – \frac{1}{{12}}.$ 2. Ta có: $B = $ $\mathop {\lim }\limits_{x \to 0} \frac{{\frac{{\sqrt {1 + 2x} – \sqrt[3]{{1 + 3x}}}}{{{x^2}}}}}{{\frac{{1 – \sqrt {\cos 2x} }}{{{x^2}}}}}.$ Mà: $\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2x} – \sqrt[3]{{1 + 3x}}}}{{{x^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2x} – (1 + x)}}{{{x^2}}}$ $ + \mathop {\lim }\limits_{x \to 0} \frac{{(x + 1) – \sqrt[3]{{1 + 3x}}}}{{{x^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{ – 1}}{{\sqrt {1 + 2x} + x + 1}}$ $ + \mathop {\lim }\limits_{x \to 0} \frac{{x + 3}}{{{{(x + 1)}^2} + (x + 1)\sqrt[3]{{1 + 3x}} + \sqrt[3]{{{{\left( {1 + 3x} \right)}^2}}}}}$ $ = – \frac{1}{2} + 1 = \frac{1}{2}.$ $\mathop {\lim }\limits_{x \to 0} \frac{{1 – \sqrt {\cos 2x} }}{{{x^2}}}$ $ = \mathop {\lim }\limits_{x \to 0} \frac{{1 – \cos 2x}}{{{x^2}}}$$.\frac{1}{{1 + \sqrt {\cos 2x} }}$ $ = 1.$ Vậy $B = \frac{1}{2}.$ Ví dụ 14. Tìm các giới hạn sau: 1. $A = \mathop {\lim }\limits_{x \to 0} {x^3}\sin \frac{1}{{{x^2}}}.$ 2. $B = $ $\mathop {\lim }\limits_{x \to + \infty } \left( {2\sin x + {{\cos }^3}x} \right)\left( {\sqrt {x + 1} – \sqrt x } \right).$ 1. Ta có: $0 \le \left| {{x^3}\sin \frac{1}{{{x^2}}}} \right| \le {x^3}.$ Mà $\mathop {\lim }\limits_{x \to 0} {x^3} = 0$ $ \Rightarrow \mathop {\lim }\limits_{x \to 0} \left| {{x^3}\sin \frac{1}{{{x^2}}}} \right| = 0$ $ \Rightarrow \mathop {\lim }\limits_{x \to 0} {x^3}\sin \frac{1}{{{x^2}}} = 0.$ Vậy $A = 0.$ 2. Ta có: $B = \mathop {\lim }\limits_{x \to + \infty } \frac{{2\sin x + {{\cos }^3}x}}{{\sqrt {x + 1} + \sqrt x }}.$ Mà $0 \le \left| {\frac{{2\sin x + {{\cos }^2}x}}{{\sqrt {x + 1} + \sqrt x }}} \right|$ $ \le \frac{3}{{\sqrt {x + 1} + \sqrt x }} \to 0$ khi $x \to + \infty .$ Do đó: $B = 0.$ You must log in or register to reply here. Share: Bluesky LinkedIn Reddit Pinterest Tumblr WhatsApp Email Share Link

Trending content

  • Tăng Giáp Thread 'Dạng toán 1. Xác định miền nghiệm của bất phương trình và hệ bất phương trình bậc nhất hai ẩn.'
    • Tăng Giáp
    • 8/12/18
    Trả lời: 0
  • H Thread 'Cực đại và cực tiểu của hàm số'
    • Huy Hoàng
    • 22/2/16
    Trả lời: 179
  • Minh Toán Thread 'Bài tập trắc nghiệm hình chóp'
    • Minh Toán
    • 10/11/17
    Trả lời: 148
  • V Thread 'Bài 2. CHUYỂN ĐỘNG THẲNG ĐỀU'
    • Vật Lí
    • 19/9/16
    Trả lời: 98
  • Doremon Thread 'Giải phương trình logarit'
    • Doremon
    • 2/12/14
    Trả lời: 96
  • H Thread 'Ứng dụng tích phân tính diện tích và thể tích'
    • Huy Hoàng
    • 20/2/16
    Trả lời: 170
  • Doremon Thread 'SỰ ĐỒNG BIẾN ,NGHỊCH BIẾN CỦA HÀM SỐ'
    • Doremon
    • 4/12/14
    Trả lời: 165
  • V Thread 'Bài 3. Chuyển động thẳng biến đổi đều'
    • Vật Lí
    • 19/9/16
    Trả lời: 172
  • Doremon Thread 'Mặt trụ tròn xoay'
    • Doremon
    • 24/1/15
    Trả lời: 97
  • H Thread 'Chuyên đề mặt nón tròn xoay'
    • Huy Hoàng
    • 22/1/15
    Trả lời: 102

Latest posts

  • Tăng Giáp Sóng dừng
    • Latest: Tăng Giáp
    • 2/12/25
    Sóng cơ
  • Tăng Giáp Giao Thoa Sóng Cơ
    • Latest: Tăng Giáp
    • 2/12/25
    Sóng cơ
  • Tăng Giáp Sóng điện từ
    • Latest: Tăng Giáp
    • 2/12/25
    Bài 22: Sóng điện từ
  • Tăng Giáp Sóng ngang. Sóng dọc. Sự truyền năng lượng của sóng cơ
    • Latest: Tăng Giáp
    • 2/12/25
    Sóng cơ
  • Tăng Giáp Mô tả sóng
    • Latest: Tăng Giáp
    • 2/12/25
    Sóng cơ
  • Tăng Giáp Dao động tắt dần - dao động cưỡng bức
    • Latest: Tăng Giáp
    • 2/12/25
    Dao động cơ
  • Tăng Giáp Động năng. Thế năng. Sự chuyển hoá năng lượng trong dao động điều hoà
    • Latest: Tăng Giáp
    • 2/12/25
    Dao động cơ
  • Tăng Giáp Bài 5. Điện thế
    • Latest: Tăng Giáp
    • 25/11/25
    Chương 1. Điện tích - Điện trường
  • Tăng Giáp Bài 6. Tụ Điện
    • Latest: Tăng Giáp
    • 25/11/25
    Chương 1. Điện tích - Điện trường
  • Tăng Giáp Cách giải phương trình bậc 3 tổng quát
    • Latest: Tăng Giáp
    • 22/11/25
    Bài 01. Phương trình

Members online

No members online now. Total: 12 (members: 0, guests: 12)

Share this page

Bluesky LinkedIn Reddit Pinterest Tumblr WhatsApp Email Share Link
  • Home
  • Forums
  • Lớp 11
  • Toán học 11
  • Chủ đề 4. GIỚI HẠN
Back Top

Từ khóa » Giới Hạn Hàm Số Lượng Giác Dạng Vô định