Bảng đạo Hàm Cơ Bản Và Nâng Cao đầy đủ Nhất
Có thể bạn quan tâm
Bảng công thức đạo hàm
Bảng đạo hàm, công thức đạo hàm từ cơ bản đến nâng cao: các công thức tính đạo hàm, công thức đạo hàm lượng giác, công thức đạo hàm hàm số đa thức…
Bảng đạo hàm của hàm số biến x
Dưới đây là bảng đạo hàm các hàm số đa thức, hàm số lượng giác, hàm số mũ và hàm số logarit cơ bản biến x.
Bảng đạo hàm các hàm số cơ bản |
(xα)’ = α.xα-1 |
(sin x)’ = cos x |
(cos x)’ = – sin x |
(tan x)’ = \[ \frac{1}{cos^2 x}\] = 1 + tan2 x |
(cot x)’ = \[ \frac{-1}{sin^2 x}\] = -(1 + cot2 x) |
(logα x)’ = \[ \frac{1}{x.lnα}\] |
(ln x)’ = \[ \frac{1}{x}\] |
(αx)’ = αx . lnα |
(ex)’ = ex |
Xem thêm: Công thức diện tích hình tròn
Bảng đạo hàm của hàm số biến u = f(x)
Dưới đây là bảng đạo hàm các hàm số đa thức, hàm số lượng giác, hàm số mũ và hàm số logarit của một hàm số đa thức u = f(x).
Bảng đạo hàm các hàm số nâng cao |
(uα)’ = α.u’.uα-1 |
(sin u)’ = u’.cos u |
(cos u)’ = – u’.sin u |
(tan u)’ = \[ \frac{u’}{cos^2 u}\] = u'(1 + tan2 u) |
(cot u)’ = \[ \frac{-u}{sin^2 u}\] = -u'(1 + cot2 x) |
(logα u)’ = \[ \frac{u}{u.lnα}\] |
(ln u)’ = \[ \frac{u’}{u}\] |
(αu)’ = u’.αu.lnα |
(eu)’ = u’.eu |
Các công thức đạo hàm cơ bản
1. Đạo hàm của một số hàm số thường gặp
Định lý 1: Hàm số \[ y = {x^n}(n \in \mathbb{N}, n > 1) \] có đạo hàm với mọi \[x \in\mathbb{R} \] và: \[{\left( {{x^n}} \right)’} = n{x^{n – 1}}\].
Nhận xét:
(C)’= 0 (với C là hằng số).
(x)’=1.
Định lý 2: Hàm số \[y= \sqrt {x} \] có đạo hàm với mọi x dương và: \[\left( {\sqrt x } \right)’ = \frac{1}{{2\sqrt x }}\].
2. Đạo hàm của phép toán tổng, hiệu, tích, thương các hàm số
Định lý 3: Giả sử \[u = u\left( x \right) và v = v\left( x \right)\] là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Ta có:
\[{\left( {u + v} \right)’} = {u’} + {v’}\]; \[{\left( {u – v} \right)’} = {u’} – {v’}\]; \[{\left( {u.v} \right)’} = {u’}.v + u.{v’}\];\[\left ( \frac{u}{v} \right )’=\frac{u’v-uv’}{v^2},(v(x) \ne 0)\]
Mở rộng:
\[({u_1} + {u_2} + … + {u_n})’ = {u_1}’ + {u_2}’ + … + {u_n}’\].Hệ quả 1: Nếu k là một hằng số thì: (ku)’ = ku’.
Hệ quả 2: \[ {\left( {\frac{1}{v}} \right)’} = \frac{{ – v’}}{{{v^2}}} , (v(x)\ne 0)\]
\[(u.v.{\rm{w}})’ = u’.v.{\rm{w}} + u.v’.{\rm{w}} + u.v.{\rm{w}}’\]
3. Đạo hàm của hàm hợp
Định lý: Cho hàm số y = f(u) với u = u(x) thì ta có: \[y’_u=y’_u.u’_x\].
Hệ quả:
\[({u^n}) = n.{u^{n – 1}}.u’,n \in \mathbb{N}^*\]. \[\left( {\sqrt u } \right)’ = \frac{{u’}}{{2\sqrt u }}\].Công thức đạo hàm lượng giác
Ngoài những công thức đạo hàm lượng giác nêu trên, ta có một số công thức bổ sung dưới đây:
[arcsin(x)]’ = \[ \frac{1}{ \sqrt{1 – x^2}}\] [arccos(x)]’ = \[ \frac{-1}{ \sqrt{1 – x^2}}\] [arctan(x)]’ = \[ \frac{1}{x^2 + 1}\]Công thức đạo hàm cấp 2
Hàm số y = f(x) có đạo hàm tại x ∈ (a; b).
Khi đó y’ = f'(x) xác định một hàm sô trên (a;b).
Nếu hàm số y’ = f'(x) có đạo hàm tại x thì ta gọi đạo hàm của y’ là đạo hàm cấp hai của hàm số y = f(x) tại x.
Kí hiệu: y” hoặc f”(x).
Ý nghĩa cơ học:
Đạo hàm cấp hai f”(t) là gia tốc tức thời của chuyển động S = f(t) tại thời điểm t.
Công thức đạo hàm cấp cao
Cho hàm số y = f(x) có đạo hàm cấp n-1 kí hiệu f (n-1) (x) (n ∈ N, n ≥ 4).
Nếu f (n-1) (x) có đạo hàm thì đạo hàm của nó được gọi là đạo hàm câp n của y = f(x), y (n) hoặc f (n) (x).
f (n) (x) = [f (n-1) (x)]’
Công thức đạo hàm cấp cao:
(x m)(n) = m(m – 1)(m – 2)…(m – n + 1).xm – n (nếu m ≥ n)
(x m)(n) = 0 (nếu m ≤ n)
Xem tiếp các công thức đạo hàm còn lại một cách đầy đủ nhất ở bảng đạo hàm bên dưới:
Bảng đạo hàm tổng hợp đầy đủ nhất
Xem thêm bảng công thức đạo hàm cơ bản và nâng cao
Như vậy là các bạn đã được bổ sung lại kiến thức cơ bản và nâng cao về đạo hàm của hàm số thông qua bảng công thức đạo hàm trên đây. Các bạn có thể xem các bài tập về đạo hàm trên website TuDienToanHoc.Com.
5 / 5 ( 13 bình chọn ) Nhựt HoàngNhựt Hoàng sinh năm 1995 tại Nam Định trong một gia đình giáo viên nên được truyền thụ tình yêu với toán từ khi còn bé. Tự nhận thấy bản thân có một chút năng khiếu về toán nên mình quyết định xem toán học là niềm đam mê và theo đuổi lâu dài. Mình lập website này mong muốn chia sẻ tới mọi người niềm đam mê, tình yêu toán học, một trong những môn khoa học vĩ đại nhất từ xưa tới nay.
Bài viết liên quan
Công thức đại số tổ hợp
Nhựt Hoàng 93708 lượt xemCông Thức Tổ Hợp, Chỉnh Hợp, Hoán Vị HOÁN VỊ Số hoán vị của n phần tử: Pn = n! Các Nguyên Tắc Về Phép Đếm PHÉP ĐẾM 1. NGUYÊN TẮC ĐẾM Có 2 biến cố
Cách tính Thể Tích Khối Cầu (Hình Cầu)
Nhựt Hoàng 94609 lượt xemKhối cầu là một hình dạng vật thể phổ biến trong đời sống: quả bóng chuyền, quả cầu pha lê, Trái Đất… Do đó, bạn cần phải biết cách tính Thể
Công Thức Tính Thể Tích Hình Hộp Chữ Nhật
Nhựt Hoàng 21916 lượt xemThể tích hình hộp chữ nhật được xác định dễ dàng khi bạn biết chiều dài, chiều rộng và chiều cao của hình hộp. Các bạn đã biết đến công thức tính
Cách tính Thể Tích Hình Trụ
Nhựt Hoàng 99329 lượt xemHình trụ là gì? Cách tính thể tích hình trụ như thế nào? Những bài tập áp dụng công thức tính thể tích hình trụ sẽ được trình bày trong bài viết sau
Công thức tính chu vi hình tròn và bài tập ví dụ
Nhựt Hoàng 123958 lượt xemChu vi hình tròn là gì? Công thức tính chu vi hình tròn, bài tập về cách tính chu vi hình tròn. Chu vi hình tròn Chu vi hình tròn là độ dài đường tròn hay còn gọi
Diện tích hình tròn là gì? Công Thức tính và Bài Tập ví dụ liên quan
Nhựt Hoàng 195746 lượt xemDiện tích hình tròn là gì? (Diện tích thương được viết tắt là S hoặc DT). Bài viết sau đây sẽ gửi tới các bạn 3 phần là định nghĩa, công thức tính và
Chuyên mục
- Sách, Tài liệu
- Khảo sát hàm số
- Chuyên đề
- Wiki Toán Học
- Toán lớp 4
- Toán lớp 2
- Toán lớp 1
- Toán lớp 10
- Toán lớp 9
- Toán lớp 8
- Toán lớp 3
- Hỏi Đáp
- Công Thức
- Toán lớp 6
- Từ điển toán
Phổ biến
-
Giải toán lớp 6 bài 1: Tập hợp. Phần tử của tập hợp
09/09/2019 198894 lượt xem -
Diện tích hình tròn là gì? Công Thức tính và Bài Tập ví dụ liên quan
25/10/2019 195746 lượt xem -
Đề thi học kì 2 lớp 3 môn Toán – Đề 3
14/06/2020 188242 lượt xem -
Bất đẳng thức Cosi – Công thức, bài tập cơ bản và nâng cao
10/09/2019 177277 lượt xem -
Giải bài tập luyện tập trang 98 99 100 SGK toán lớp 6 tập 1
09/11/2019 176730 lượt xem -
Bán Trú Vệ Tinh Tại Tân Bình UY TÍN
26/05/2020 176608 lượt xem -
Giải toán lớp 6 bài 7 chương 2: Phép trừ hai số nguyên
24/10/2019 175764 lượt xem -
Giải bài tập Luyện tập 2 trang 19 – 20 SGK toán lớp 6 tập 1
16/09/2019 175738 lượt xem -
Giải toán lớp 6 bài 2 hình học: Ba Điểm Thẳng Hàng
11/11/2019 175467 lượt xem -
Giải bài tập luyện tập 1 trang 59, 60 SGK toán lớp 6 tập 1
08/10/2019 174832 lượt xem
Thuật ngữ tìm nhiều
- bicircular quartic là gì? (152756 lượt xem)
- synthetical substituend là gì? (152726 lượt xem)
- neutral equilibrium là gì? (152670 lượt xem)
- universal joint là gì? (152533 lượt xem)
- terminating là gì? (152341 lượt xem)
Đề xuất
-
Giải toán lớp 6 bài 2: Tập hợp số tự nhiên
12/09/2019 91823 lượt xem -
Review ngành dinh dưỡng Đại học Đông Á
26/05/2021 20812 lượt xem -
MỘT SỐ LỖI THƯỜNG GẶP CỦA HỌC SINH, SINH VIÊN KHI HỌC TIẾNG ANH
03/07/2020 94035 lượt xem
Page Từ Điển Toán Học
Từ Điển Toán Học
- TỪ ĐIỂN TOÁN HỌC.COM
- Giới thiệu
- Liên hệ
Copyright© 2019 Tudientoanhoc.com
Yêu cầu bổ sung thuật ngữ toán học cần dịch
Gửi yêu cầuMỗi một yêu cầu bổ sung thuật ngữ toán học của bạn là một đóng góp to lớn cho sự hoàn thiện của chúng tôi. Xin chân thành cảm ơn!
HủyGửi câu hỏi toán học và nhận giải đáp miễn phí từ Nhựt Hoàng cùng các cộng sự
Gửi câu hỏi HủyĐăng ký nhận thông báo khi có bài viết mới
Gửi yêu cầu Hủy apps- notifications_active
- format_quote
- mode_edit
Từ khóa » đạo Hàm Lượng Giác đặc Biệt
-
Đạo Hàm Lượng Giác Và Mẹo Hay Giúp Học Siêu Nhanh Các Công Thức
-
Đạo Hàm Của Các Hàm Lượng Giác – Wikipedia Tiếng Việt
-
Bảng Công Thức Đạo Hàm Và Đạo Hàm Lượng Giác [Đầy Đủ]
-
Các Công Thức đạo Hàm Và đạo Hàm Lượng Giác đầy đủ Nhất
-
Bảng đầy đủ Các Công Thức đạo Hàm Và đạo Hàm Lượng Giác
-
Đạo Hàm Của Hàm Số Lượng Giác - Giải Bài Tập SGK Toán 11
-
Tổng Hợp Các Công Thức đạo Hàm Cơ Bản, Phân Thức, Lượng Giác
-
Công Thức Đạo Hàm Lượng Giác Đầy Đủ Và Bài Tập ... - Marathon
-
Cách Tính đạo Hàm Của Hàm Số Lượng Giác Cực Hay - Toán Lớp 11
-
Nghiệm Của Các Phương Trình Lượng Giác đặc Biệt - MathVn.Com
-
Xem Bảng Công Thức Lượng Giác Đầy Đủ - MathVn.Com
-
Đạo Hàm Của Hàm Số Lượng Giác - Học Tốt Toán 11 - I Toán - Itoan
-
Cách Tính đạo Hàm Của Hàm Số Lượng Giác Cực Hay