Cách Tính đạo Hàm Của Hàm Số Lượng Giác Cực Hay - Toán Lớp 11
Có thể bạn quan tâm
Cách tính đạo hàm của hàm số lượng giác cực hay
Với Cách tính đạo hàm của hàm số lượng giác cực hay Toán lớp 11 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập tính đạo hàm của hàm số lượng giác từ đó đạt điểm cao trong bài thi môn Toán lớp 11.
A. Phương pháp giải
Áp dụng công thức tính đạo hàm của hàm số :
Trong đó hàm số y= f(x) có đạo hàm tại các điểm mà hàm số xác định
B. Ví dụ minh họa
Ví dụ 1. Tính đạo hàm của hàm số y= sin (2x+ 8)?
A. 2 cos(2x+ 8) B. cos( 2x+ 8) C. –cos( 2x+ 8) D. -2cos( 2x+ 8)
Hướng dẫn giải
+ áp dụng công thức đạo hàm của hàm hợp ta có;
y'=cos( 2x+8).( 2x+8)' = 2cos( 2x+ 8)
Chọn A.
Ví dụ 2. Tính đạo hàm của hàm số: y= cos( x2+ 7x- 9)?
A.- sin( x2 + 7x- 9) B.- sin ( x2+ 7x – 9)( x2+ 7x- 9)
C. – (2x+7). sin(x2 + 7x- 9) D. sin(x2+ 7x- 9)( 2x+7)
Hướng dẫn giải
Áp dụng công thức đạo hàm của hàm hợp ta có:
y'= -sin(x2+7x-9).(x2+7x-9)' = - sin(x2+ 7x- 9).( 2x+ 7).
Chọn C.
Ví dụ 3. Tính đạo hàm của hàm số: y= sin 8x+ cos 2x
A. cos8x – sin2x B. 8 cos8x – 2sin 2x
C. 8.cos8x + 2sin2x D. – cos8x + sin 2x
Hướng dẫn giải
Ta có: y'=( sin8x)'+(cos2x)'=8 cos8x-2 sin2x
Chọn B.
Ví dụ 4.Tính đạo hàm của hàm số: y=2 sin( √(x2+4x)-1) ?
Hướng dẫn giải
Ví dụ 5.Tính đạo hàm của hàm số y= tan( 4x+ 1) – cot 2x?
Hướng dẫn giải
Ví dụ 6. Tính đạo hàm của hàm số: y=tan( √(x2+2x))
Hướng dẫn giải
Ví dụ 7. Tính đạo hàm của hàm số: y= sin( x2- 3x) – tan(x2- 1)?
Hướng dẫn giải
Ví dụ 8. Tính đạo hàm của hàm số: y= sin4 ( 6x-2)?
A. 4.sin3 ( 6x-2)
B. 4.sin3 ( 6x-2).cos( 6x-2)
C. 24.sin3 ( 6x-2).cos( 6x-2)
D. -24.sin3 ( 6x-2).cos( 6x-2)
Hướng dẫn giải
Ta có: y'=4.sin3 ( 6x-2).[sin( 6x-2) ]'
⇔ y'= 4.sin3 ( 6x-2).cos( 6x-2).( 6x-2)'
⇔ y'= 24.sin3 ( 6x-2).cos( 6x-2)
Chọn C.
Ví dụ 9. Tính đạo hàm của hàm số y= xsin(x+ 1)?
A. sin(x+ 1) + x. cos( x+ 1) B. cos( x+ 1) – x.sin ( x+1)
C. – sin( x+ 1) + x.cos( x+ 1) D. sin( x+ 1) – x.cos(x+ 1)
Hướng dẫn giải
Áp dụng công thức đạo hàm của một tích ta có:
y'=( x' ).sin(x+1)+ x.[sin(x+1)]'
⇔ y'=1.sin(x+1)+x.cos(x+1 ) ( x+1)'
⇔ y'=sin(x+1)+x.cos( x+1).
Chọn A.
Ví dụ 10.Tính đạo hàm của hàm số y= ( 1+ tanx)4
Hướng dẫn giải
Ví dụ 11. Tính đạo hàm của hàm số y= √(sin4x)
Hướng dẫn giải
Áp dụng công thức đạo hàm của hàm hợp y= √u với u= sin4x ta có:
Ví dụ 12. Tính đạo hàm của hàm số y= √(cos( x3- x2+2))?
Hướng dẫn giải
Áp dụng công thức đạo hàm của hàm hợp y =√u với u= cos( x3- x2+2) ta có
Ví dụ 13. Tính đạo hàm của hàm số y= sin( tanx)?
Hướng dẫn giải
Áp dụng công thức đạo hàm của hàm hợp và đạo hàm của hàm số lượng giác ta có;
Ví dụ 14.Tính đạo hàm của hàm số y= sin2x. cosx
A. 2cos2x – sin2x .cosx B. - sinx. cos2x + sin3x
C. 2sinx. cos2x + sin3x D. 2sinx. cos2x – sin3x
Hướng dẫn giải
Áp dụng công thức đạo hàm của hàm số lượng giác và đạo hàm của một tích ta có:
y'=( sin2 x)'.cosx+ sin2 x( cosx)'
⇔ y'=2sinx.( sinx)'.cosx+ sin2x.(-sinx)
⇔ y'=2sinx.cosx.cosx- sin3 x = 2sinx. cos2x – sin3x
Chon D
Ví dụ 15. Tính đạo hàm của hàm số y= x/cosx
Hướng dẫn giải
Áp dụng công thức đạo hàm của một thương ta có:
Ví dụ 16. Tính đạo hàm của hàm số y= (x2+ 2x).cos x
A. ( 2x+2).cosx+( x2+2x).sinx B. ( 2x+2).cosx-( x2+2x)
C. ( 2x+2).cosx-( x2+2x).sinx D. Đáp án khác
Hướng dẫn giải
Áp dụng công thức đạo hàm của một tích ta có:
y'=( x2+2x)'.cosx+( x2+2x).( cosx)'
⇔y'=( 2x+2).cosx-( x2+2x).sinx
Chọn C.
Ví dụ 17. Tính đạo hàm của hàm số y= (1- cos 2x) (2- sin3x)
A. y'=-2sin2x.( 2-sin3x)+3cos 3x( 1- cos2x)
B. y'=2sin2x.( 2-sin3x)-3cos 3x( 1- cos2x)
C. y'=2sin2x.( 2-sin3x)+3cos 3x( 1- cos2x)
D. Đáp án khác
Hướng dẫn giải
Áp dụng công thức đạo hàm của một tích ta có
y'=( 1-cos2x)'.( 2-sin3x)+( 1-cos2x).( 2-sin3x)'
⇔ y'=sin2x.( 2x)'.( 2-sin3x)+( 1-cos2x).( -cos3x).( 3x)'
⇔ y'=2sin2x.( 2-sin3x)-3cos 3x( 1- cos2x)
Chọn B.
Ví dụ 18. Tính đạo hàm của hàm số:
Hướng dẫn giải
Ví dụ 19. Tính đạo hàm của hàm số sau
Hướng dẫn giải
C. Bài tập vận dụng
Câu 1: Tính đạo hàm của hàm số y= sin (x2+ 4x- 20)?x
A. ( 2x- 4) cos(x2+ 4x – 20 ) B. (x2+ 4x- 20). cos(x2 +4x- 20)
C. (2x+ 4).cos( x2+ 4x- 20) D. -2cos( x2+4x- 20)
Lời giải:
+ Áp dụng công thức đạo hàm của hàm hợp ta có;
y'=cos(x2+ 4x-20).( x2+4x-20)' = cos(x2+ 4x- 20).( 2x+ 4)
Chọn C
Câu 2: Tính đạo hàm của hàm số: y= cos( x2+√x - 2)?
A. - sin(x2+ √x - 2).( 2x+ 1/(2√x)). B.- sin ( x2+√x – 2)( x2+√x- 2)
C. – (2x+√x). sin(x2 + √x- 2) D. sin(x2+ 7x- 2)( 2x+ √x)
Lời giải:
Áp dụng công thức đạo hàm của hàm hợp ta có:
y'= -sin(x2+√x-2).(x2+√x-2)' = - sin(x2+ √x - 2).( 2x+ 1/(2√x)).
Chọn A.
Câu 3: Tính đạo hàm của hàm số: y= 3sin 2x - 4cos 6x
A. - 6 cos2x + 24 sin6x B. 6cos2x + 24sin 6x
C. 6.cos2x + 2sin6x D. 3cos2x + 4sin x
Lời giải:
Ta có: y'=( 3sin2x)'- (4cos6x)'=3.2 cos2x+4.6 sin6x
Hay y'=6cos2x+24. sin6x
Chọn B.
Câu 4: Tính đạo hàm của hàm số: y=4 sin( √(2x+3)-x2+2x) ?
Lời giải:
Câu 5: Tính đạo hàm của hàm số y= 3tan(x2 - 1) – 4cot 4x?
Lời giải:
Câu 6: Tính đạo hàm của hàm số: y=tan( √(2x2+x))+x -10
Lời giải:
Câu 7: Tính đạo hàm của hàm số: y= sin[ (x- 1)( x+ 2) + 10] – tan(x3- x2)?
Lời giải:
Câu 8: Tính đạo hàm của hàm số: y= sin3 ( √(4x+2))?
Lời giải:
Câu 9: Tính đạo hàm của hàm số y= ( 2x+ 2) .sin( 2x- 3)?
A. sin(2x-3)+2(2x+2).cos( 2x-3).
B. 2sin(2x-3)+(2x+2).cos( 2x-3).
C. 2sin(2x-3)-2(2x+2).cos( 2x-3).
D. 2sin(2x-3)+2(2x+2).cos( 2x-3).
Lời giải:
Áp dụng công thức đạo hàm của một tích ta có:
y'=( 2x+2)'.sin(2x-3)+ (2x+2).[sin(2x-3)]'
⇔ y'=2.sin(2x-3)+( 2x+2).cos(2x-3 ) (2x-3)'
⇔ y'=2sin(2x-3)+2(2x+2).cos( 2x-3).
Chọn D.
Câu 10: Tính đạo hàm của hàm số y= ( -cotx+ tanx)3
Lời giải:
Áp dụng công thức đạo hàm của hàm hơp y= un với u= -cotx+ tanx ta được”
y'=3.(-cotx+tanx)2.(-cotx+tanx)'
Câu 11: Tính đạo hàm của hàm số y= √(sin(x3+ x2-x))
Lời giải:
Áp dụng công thức đạo hàm của hàm hợp y= √u với u= sin(x3+ x2-x) ta có:
Câu 12: Tính đạo hàm của hàm số y= √(cos3 ( 2x+2) ) ?
Lời giải:
Áp dụng công thức đạo hàm của hàm hợp y =√u với u= cos3 ( 2x+2) ta có
Câu 13: Tính đạo hàm của hàm số y= 2cos(3cot 2x)?
Lời giải:
Áp dụng công thức đạo hàm của hàm hợp và đạo hàm của hàm số lượng giác ta có;
y'=-2 sin( 3cot2x).( 3.cot2x)'
Câu 14: Tính đạo hàm của hàm số y= sin( 2x- 3).cos( 8- 4x)
A. 2 cos( 2x-3).cos( 8-4x)+2 sin( 2x-3).sin( 8-4x)
B. - 2 cos( 2x-3).cos( 8-4x)-8 sin( 2x-3).sin( 8-4x)
C. - 2 cos( 2x-3).cos( 8-4x)-4 sin( 2x-3).sin( 8-4x)
D. 2 cos( 2x-3).cos( 8-4x)+4 sin( 2x-3).sin( 8-4x)
Lời giải:
Áp dụng công thức đạo hàm của hàm số lượng giác và đạo hàm của một tích ta có:
y^'=[sin( 2x-3)]'.cos( 8-4x)+sin( 2x-3).[cos(8-4x)]'
⇔ y'=cos( 2x-3).(2x-3)'.cos( 8-4x)
+sin( 2x-3).( -sin( 8-4x) ).( 8-4x)'
⇔y'=2 cos( 2x-3).cos( 8-4x)+4 sin( 2x-3).sin( 8-4x)
Chọn D.
Câu 15: Tính đạo hàm của hàm số
Lời giải:
Áp dụng công thức đạo hàm của một thương ta có:
Câu 16: Tính đạo hàm của hàm số y= √(2x3+ x2-1) .sinx
Lời giải:
Áp dụng công thức đạo hàm của một tích ta có:
Câu 17: Tính đạo hàm của hàm số y= ( 2x +cos x) ( cos2x- sin3x)?
A. ( 2- sinx) .( cos2x-sin3x)+(2x+cosx).(2sin2x-3cos3x)
B. ( 2+ sinx) .( cos2x-sin3x)+(2x+cosx).(- 2sin2x-3cos3x)
C. ( 2- sinx) .( cos2x-sin3x)+(2x+cosx).(- 2sin2x-3cos3x)
D.Đáp án khác
Lời giải:
Áp dụng công thức đạo hàm của một tích ta có
y'=( 2x+ cosx)'.(cos2x-sin3x)+( 2x+ cosx).( cos2x-sin3x)'
⇔ y'=( 2- sinx) .( cos2x-sin3x)+(2x+cosx).(- 2sin2x-3cos3x)
Chọn C.
Câu 18: Tính đạo hàm của hàm số
Lời giải:
Áp dụng công thức đạo hàm của một thương
Câu 19: Tính đạo hàm của hàm số y= 1/cot( x2+2x) ?
Lời giải:
Câu 20: Tính đạo hàm của hàm số:
Lời giải:
Câu 21: Tính đạo hàm của hàm số sau: y=sin(x+1)/(x-2)
Lời giải:
Từ khóa » đạo Hàm Lượng Giác đặc Biệt
-
Bảng đạo Hàm Cơ Bản Và Nâng Cao đầy đủ Nhất
-
Đạo Hàm Lượng Giác Và Mẹo Hay Giúp Học Siêu Nhanh Các Công Thức
-
Đạo Hàm Của Các Hàm Lượng Giác – Wikipedia Tiếng Việt
-
Bảng Công Thức Đạo Hàm Và Đạo Hàm Lượng Giác [Đầy Đủ]
-
Các Công Thức đạo Hàm Và đạo Hàm Lượng Giác đầy đủ Nhất
-
Bảng đầy đủ Các Công Thức đạo Hàm Và đạo Hàm Lượng Giác
-
Đạo Hàm Của Hàm Số Lượng Giác - Giải Bài Tập SGK Toán 11
-
Tổng Hợp Các Công Thức đạo Hàm Cơ Bản, Phân Thức, Lượng Giác
-
Công Thức Đạo Hàm Lượng Giác Đầy Đủ Và Bài Tập ... - Marathon
-
Nghiệm Của Các Phương Trình Lượng Giác đặc Biệt - MathVn.Com
-
Xem Bảng Công Thức Lượng Giác Đầy Đủ - MathVn.Com
-
Đạo Hàm Của Hàm Số Lượng Giác - Học Tốt Toán 11 - I Toán - Itoan
-
Cách Tính đạo Hàm Của Hàm Số Lượng Giác Cực Hay