Biết \(\int\limits_0^{\frac{\pi }{4}} {\left( {{{\tan }^2}x + 2{{\tan }^8}x ...
Có thể bạn quan tâm
- Câu hỏi:
Biết \(\int\limits_0^{\frac{\pi }{4}} {\left( {{{\tan }^2}x + 2{{\tan }^8}x} \right)dx = - \frac{a}{b} + \frac{\pi }{c}} \) với \(a,\,\,b,\,\,c \in \mathbb{N}\), phân số \(\frac{a}{b}\) tối giản. Tính \(T = a + b + c.\)
- A. T = 156
- B. T = 62
- C. T = 159
- D. T = 167
Lời giải tham khảo:
Đáp án đúng: A
Ta có \(I = \int\limits_0^{\frac{\pi }{4}} {\left( {{{\tan }^2}x + 2{{\tan }^8}x} \right)dx} \)
Đặt \(t = \tan x\)\( \Rightarrow dt = \frac{{dx}}{{{{\cos }^2}x}}\) \( = \left( {1 + {{\tan }^2}x} \right)dx\) \( = \left( {1 + {t^2}} \right)dx\)
\( \Rightarrow dx = \frac{{dt}}{{1 + {t^2}}}\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \frac{\pi }{4} \Rightarrow t = 1\end{array} \right.\).
Khi đó ta có: \(I = \int\limits_0^1 {\left( {{t^2} + 2{t^8}} \right)\frac{{dt}}{{{t^2} + 1}}} \)
\(\begin{array}{l} \Rightarrow I = \int\limits_0^1 {\left( {2{t^6} - 2{t^4} + 2{t^2} - 1 + \frac{1}{{{t^2} + 1}}} \right)dt} \\ \Rightarrow I = \left. {\left( {\frac{{2{t^7}}}{7} - \frac{{2{t^5}}}{5} + \frac{{2{t^3}}}{3} - t} \right)} \right|_0^1 + \int\limits_0^1 {\frac{{dt}}{{{t^2} + 1}}} \\ \Rightarrow I = - \frac{{47}}{{105}} + {I_1}\end{array}\)
Đặt \(t = \tan u\)\( \Rightarrow dt = \frac{1}{{{{\cos }^2}u}}du = \left( {1 + {{\tan }^2}u} \right)du\)
Đổi cận: \(\left\{ \begin{array}{l}t = 0 \Rightarrow u = 0\\t = 1 \Rightarrow u = \frac{\pi }{4}\end{array} \right.\).
Khi đó ta có: \({I_1} = \int\limits_0^{\frac{\pi }{4}} {\frac{{\left( {1 + {{\tan }^2}u} \right)du}}{{1 + {{\tan }^2}u}}} = \int\limits_0^{\frac{\pi }{4}} {du} = \frac{\pi }{4}\).
\( \Rightarrow I = - \frac{{47}}{{105}} + \frac{\pi }{4}\)\( \Rightarrow a = 47,\,\,b = 105,\,\,c = 4\)
Vậy \(T = a + b + c\)\( = 47 + 105 + 4 = 156\)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 244828
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi HK2 môn Toán 12 năm 2021 - Trường THPT Nguyễn Hiền
40 câu hỏi | 60 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Công thức diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,\) \(x = b\) là:
- Nghiệm phức có phần ảo dương của phương trình \({z^2} - 2z + 5 = 0\) là:
- Cho hình phẳng \(\left( H \right)\) được giới hạn bởi các đường \(x = 0,\) \(x = \pi ,\) \(y = 0\) và \(y = - \cos x\). Thể tích V của khối tròn xoay tạo thành khi quay \(\left( H \right)\) xung quanh trục Ox được tính theo công thức:
- Trong không gian Oxyz, cho điểm \(A\left( {1; - 4; - 3} \right)\) và \(\overrightarrow n = \left( { - 2;5;2} \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm A và nhận \(\overrightarrow n \) làm vecto pháp tuyến là
- Họ nguyên hàm của hàm số \(f\left( x \right) = 3{x^2} - 2x + 3\) là:
- Cho hai hàm số \(y = f\left( x \right),\) \(y = g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Công thức tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số trên và các đường thẳng \(x = a,\) \(x = b\) là:
- Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {1;9} \right]\), thỏa mãn \(\int\limits_1^9 {f\left( x \right)dx = 7} \) và \(\int\limits_4^5 {f\left( x \right)dx = 3} \). Tính giá trị biểu thức \(P = \int\limits_1^4 {f\left( x \right)dx + } \int\limits_5^9 {f\left( x \right)dx.} \)
- Trong không gian Oxyz, cho điểm \(A\left( {2;3;5} \right)\). Tìm tọa độ điểm A’ là hình chiếu vuông góc của A lên trục Oy.
- Trong không gian Oxyz, viết phương trình đường thẳng đi qua điểm \(A\left( {1;2;3} \right)\) và có vecto chỉ phương \(\overrightarrow u = \left( {2; - 1; - 2} \right).\)
- Gọi \({z_1};\,\,{z_2}\) là hai nghiệm của phương trình \(2{z^2} + 10z + 13 = 0\), trong đó \({z_1}\) có phần ảo dương. Số phức \(2{z_1} + 4{z_2}\) bằng
- Số phức \(z = \frac{{5 + 15i}}{{3 + 4i}}\) có phần thực là
- Trong không gian Oxyz, một vecto pháp tuyến của mặt phẳng \(\frac{x}{{ - 5}} + \frac{y}{1} + \frac{z}{{ - 2}} = 1\) là:
- Phần thực của số phức \(\left( {2 - i} \right)\left( {1 + 2i} \right)\) là:
- Cho các số phức \({z_1} = 3 + 4i,\) \({z_2} = 5 - 2i\). Tìm số phức liên hơp \(\overline z \) của số phức \(z = 2{z_1} + 3{z_2}\).
- Trong không gian Oxyz, các vecto đơn vị trên các trục Ox,Oy,Oz lần lượt là \(\overrightarrow i ,\,\,\overrightarrow j ,\,\,\overrightarrow k \) cho điểm \(M\left( {3; - 4;12} \right)\). Mệnh đề nào sau đây đúng?
- Trong không gian Oxyz, đường thẳng đi qua điểm \(A\left( {3;1;2} \right)\) và vuông góc với mặt phẳng \(x + y + 3z + 5 = 0\) có phương trình là
- \(\int {{e^{ - 2x + 1}}dx} \) bằng
- Tính môđun \(\left| z \right|\) của số phức \(z = \left( {2 + i} \right){\left( {1 + i} \right)^2} + 1\).
- Cho \({z_1};\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 2z + 5 = 0\), biết \({z_1} - {z_2}\) có phần ảo là số thực âm. Tìm phần ảo của số phức \({\rm{w}} = 2z_1^2 - z_2^2\).
- Cho tích phân \(I = \int\limits_1^e {\frac{{2\ln x + 3}}{x}dx} \). Nếu đặt \(t = \ln x\) thì:
- Biết \(\int\limits_1^3 {\frac{{2x - 3}}{{x + 1}}dx} = a\ln 2 + b\) với \(a,\,\,b\) là các số hữu tỉ. Khi đó \({b^2} - 2a\) bằng
- Cho hai số phức \({z_1} = - 1 + 2i;\) \({z_2} = 1 + 2i\). Tinh \(T = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\)
- Biết \(\int\limits_0^{\frac{\pi }{4}} {\left( {{{\tan }^2}x + 2{{\tan }^8}x} \right)dx = - \frac{a}{b} + \frac{\pi }{c}} \) với \(a,\,\,b,\,\,c \in \mathbb{N}\), phân số \(\frac{a}{b}\) tối giản. Tính \(T = a + b + c.\)
- Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;2;1} \right)\) và cắt mặt phẳng \(\left( P \right):2x - y + 2z + 7 = 0\) theo một đường tròn có đường kính bằng 8. Phương trình mặt cầu \(\left( S \right)\) là:
- Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(I\left( {3;4; - 5} \right)\) và mặt phẳng \(\left( P \right)\) có phương trình \(2x + 6y - 3z + 4 = 0\). Phương trình mặt cầu \(\left( S \right)\) có tâm \(I\) và tiếp xúc với \(\left( P \right)\) là:
- Trong không gian Oxyz, biết \(\overrightarrow n = \left( {a;b;c} \right)\) là vecto pháp tuyến của mặt phẳng qua \(A\left( {2;1;5} \right)\) và chứa trục Ox. Tính \(k = \frac{b}{c}.\)
- Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3} - x\) và đồ thị hàm số \(y = x - {x^2}\).
- Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 4\) và các đường thẳng \(y = 0,\) \(x = - 1,\) \(x = 5\) bằng:
- Trong không gian Oxyz, cho bốn điểm \(A\left( {0;1; - 1} \right),\) \(B\left( {1;1;2} \right),\) \(C\left( {1; - 1;0} \right)\) và \(D\left( {0;0;1} \right)\). Mặt phẳng \(\left( \alpha \right)\) song song với mặt phẳng \(\left( {BCD} \right)\) và chia khối tứ diện ABCD thành hai khối đa diện sao cho tỉ số thể tích của khối đa diện có chứa điểm A và khối tứ diện ABCD bằng \(\frac{1}{{27}}\). Viết phương trình mặt phẳng \(\left( \alpha \right)\).
- Trong không gian Oxyz, cho ba điểm \(A\left( {0;0;1} \right),\) \(B\left( {0;2;0} \right),\) \(C\left( {3;0;0} \right)\). Gọi \(H\left( {x;y;z} \right)\) là trực tâm của tam giác ABC. Tính \(k = x + 2y + z.\)
- Diện tích S của hình phẳng giới hạn bởi các đường \(y = {e^{2x}},\) \(y = 0,\) \(x = 0,\) \(x = 2\) được biểu diễn bởi \(\frac{{{e^a} - b}}{c}\) với \(a,\,\,b,\,\,c \in \mathbb{Z}\). Tính \(P = a + 3b - c.\)
- Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {\tan ^2}x\) biết phương trình \(F\left( x \right) = 0\) có một nghiệm bằng \(\frac{\pi }{4}.\)
- Trong không gian Oxyz, viết phương trình đường thẳng \(\Delta \) đi qua hai điểm \(A\left( {1;4;4} \right)\) và \(B\left( { - 1;0;2} \right).\)
- Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 1}}{2} = \frac{{z + 1}}{{ - 1}}\). Đường thẳng đi qua điểm \(M\left( {2;1; - 1} \right)\) và song song với đường thẳng d có phương trình là:
- Trong không gian Oxyz, tính diện tích S của tam giác ABC, biết \(A\left( {2;0;0} \right),\) \(B\left( {0;3;0} \right)\) và \(C\left( {0;0;4} \right)\)
- Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số \(y = \sqrt x \cos \frac{x}{2},\,\,y = 0,\,\,x = \frac{\pi }{2},\,\,x = \pi \). Tính thể tích \(V\) của khối tròn xoay sinh ra khi cho hình phẳng \(\left( H \right)\) quay xung quanh trục Ox.
- Số phức liên hợp \(\overline z \) của số phức \(z = \frac{{4 + 6i}}{{1 - i}}\) là:
- Tính tích phân \(I = \int\limits_2^7 {\sqrt {x + 2} dx} .\)
- Trong không gian Oxyz, cho hai đường thẳng \(\frac{{x - 2}}{1} = \frac{{y - 4}}{1} = \frac{z}{{ - 2}}\) và \(\frac{{x - 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 2}}{{ - 1}}\). Gọi M là trung điểm đoạn vuông góc chung của hai đường thẳng trên. Tính độ dài đoạn thẳng OM.
- Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = - {3^x},\) \(y = 0,\) \(x = 0,\) \(x = 4\). Mệnh đề nào sau đây đúng?
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 9 Lớp 12 Deserts
Tiếng Anh 12 mới Unit 5
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Hoá Học 12 Chương 5
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Sinh Học 12 Chương 2 Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 3 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Đàn ghi ta của Lor-ca
Tây Tiến
Ai đã đặt tên cho dòng sông
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Quá trình văn học và phong cách văn học
Đất Nước- Nguyễn Khoa Điềm
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Nguyên Hàm Tan^8x
-
Tìm Các Nguyên Hàm - HOCMAI Forum
-
Tìm Họ Nguyên Hàm Của Hàm Số F(x) = (tan ^5)x.
-
Tìm Nguyên Hàm Sec(8x) | Mathway
-
Tìm Nguyên Hàm F(x)=-8x | Mathway
-
[LỜI GIẢI] Biết Intlimits0^pi 4 Tan ^2x + 2tan ^8x Dx = - Dab +
-
Cách Tìm Nguyên Hàm Của Hàm Số Lượng Giác Cực Hay - Toán Lớp 12
-
$I=\int_{0}^{\frac{\pi}{4}}\left ( 1-tan^{8}x \right )dx$ - Tích Phân
-
Tính Nguyên Hàm Của Tanx Bằng Công Thức Cực Hay
-
Tìm Nguyên Hàm Của Tan^3 X - Thanh Hằng - Hoc247
-
Giúp Mình Với Tích Phân Lương Giác
-
Nguyên Hàm Và Tích Phân Hàm Lượng Giác - Toán Lớp 12