Cách Tìm Nguyên Hàm Của Hàm Số Lượng Giác Cực Hay - Toán Lớp 12

Cách tìm nguyên hàm của hàm số lượng giác (cực hay)
  • Giảm giá 50% sách VietJack đánh giá năng lực các trường trên Shopee Mall
Trang trước Trang sau

Bài viết Cách tìm nguyên hàm của hàm số lượng giác với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm nguyên hàm của hàm số lượng giác.

  • Cách giải bài tập Tìm nguyên hàm của hàm số lượng giác
  • Ví dụ minh họa Tìm nguyên hàm của hàm số lượng giác
  • Bài tập vận dụng Tìm nguyên hàm của hàm số lượng giác
  • Bài tập tự luyện Tìm nguyên hàm của hàm số lượng giác

Cách tìm nguyên hàm của hàm số lượng giác (cực hay)

Bài giảng: Cách làm bài tập nguyên hàm và phương pháp tìm nguyên hàm của hàm số cực nhanh - Cô Nguyễn Phương Anh (Giáo viên VietJack)

A. Phương pháp giải

Quảng cáo

Ta có bảng nguyên hàm của các hàm số cơ bản hay gặp

Nguyên hàm của hàm đa thức, hàm phân thức

B. Ví dụ minh họa

Ví dụ 1. Nguyên hàm của hàm số: y = 7sinx?

A. 7sinx + C.

B. 7cosx + C.

C. –7cosx + C.

D. Tất cả sai.

Lời giải

Ta có: ∫7sinx dx = 7∫sinx dx = -7cosx + C.

Chọn C.

Ví dụ 2. Nguyên hàm của hàm số: y = 6sinx + 8cosx là:

A. –6cosx - 8sinx + C.

B. 6cosx + 8sinx + C.

C. –6cosx + 8sinx + C.

D. 6cosx - 8sinx + C.

Lời giải

Nguyên hàm của hàm số đã cho là:

∫(6sinx + 8cosx)dx = 6∫sinx dx + 8∫cosx dx = -6cosx + 8sinx + C.

Chọn C.

Quảng cáo

Ví dụ 3. Tìm nguyên hàm của hàm số y = 8sinx - 8cosx

A. 8cosx - 8sinx.

B. -8cosx - 8sinx.

C. 8cosx + 8sinx.

D. Tất cả sai.

Lời giải

Ta có: ∫(8sinx - 8cosx)dx = 8∫sinx dx - 8∫cosx dx = -8cosx – 8sinx

Chọn B.

Ví dụ 4. Tìm nguyên hàm của hàm số:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

A. tanx + cotx + C.

B. tanx - cotx + C.

C. – tanx + cotx + C.

D. – cotx - tanx + C.

Lời giải

Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn A.

Ví dụ 5. Tìm nguyên hàm của hàm số y = x + tan2x

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải

Ta có:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn B.

Quảng cáo

Ví dụ 6. Tìm nguyên hàm của hàm số y = sin7x - 7cos2x + lne

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải

Ta có lne = 1 nên nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn A.

Ví dụ 7. Tìm nguyên hàm F(x) của hàm số: y = sin2x – cos3x biết tại x = 0 thì F(x) = 1?

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải

Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Do tại x = 0 ta có F(x) = 1 nên:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Vậy nguyên hàm cần tìm là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn C.

Ví dụ 8. Nguyên hàm của hàm số y = 2cos6x - 3sin4x có dạng F(x) = a.sin6x + b.cos4x. Tính 3a + 4b?

A. –4. B. 4. C. 2. D. -2.

Lời giải

Ta có nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn B.

Ví dụ 9. Tìm nguyên hàm của hàm số:

Cách tìm nguyên hàm của hàm số lượng giác cực hay Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải

Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn B.

Ví dụ 10. Tìm nguyên hàm của hàm số sau: y = tan2x + 3

A. cot2x + 2x + C.

B. tanx + x + C.

C. tanx + 2x + C.

D. cotx + x + C.

Lời giải

Ta có:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

⇒ Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn C.

Quảng cáo

Ví dụ 11. Tìm nguyên hàm của hàm số: y = 3.sin2x + 5cos2x?

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải

Ta có: 3sin2x + 5cos2x = 3(sin2x + cos2x) + 2cos2x - 1 + 1

= 3.1 + cos2x + 1 = 4 + cos2x

⇒ Nguyên hàm của hàm số là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn C.

Ví dụ 12. Tìm nguyên hàm của hàm số: y = cos4x

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải

Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn A.

Ví dụ 13. Tính I = ∫sin2x.cos4x dx

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải

Ta có:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn B.

C. Bài tập vận dụng

Câu 1: Gọi F(x) là nguyên hàm của hàm số: y = 2sin2x - 3cos3x; biết F(0) = 2. Tìm F(x)

A. –2cos2x - 3sin 3x + C.

B. -cos2x – sin3x + C.

C. -cos2x + sin3x + C.

D. Tất cả sai.

Lời giải:

Ta có:

∫(2sin2x - 3cos3x)dx = 2∫sin2x dx - 3∫cos3x dx = -cos2x + sin3x + C.

Do F(0) = 2 nên ta có: F(0) = -1 + 0 + C = 2 ⇔ C = 3.

Vậy F(x) cần tìm là: F(x) = -cos2x + sin3x + C.

Chọn C.

Câu 2: Nguyên hàm của hàm số: y = 6sinx.sin5x - 6cosx.cos5x là:

A. –cos6x + C.

B. 6sin6x + C.

C. –6sinx + C.

D. –sin6x + C.

Lời giải:

Ta có: 6.sinx.sin5x - 6cosx.cos5x = -6(-sinx.sin5x + cosx.cos5x) = -6.cos6x.

Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn D.

Câu 3: Tìm nguyên hàm của hàm số y = -20.sin3x.cos3x + 8sin2x

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải:

Ta có: -20sin3x.cos3x = -10.(2.sin3x.cos3x) = -10.sin6x

⇒ Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn B.

Câu 4: Tìm nguyên hàm của hàm số: y = 2tan2x + 3cot2x?

A. 2tanx - 3cotx + C.

B. –2tanx + 3cotx + C.

C. tanx + cotx - 5x + C.

D. 2tanx – 3cotx – 5x + C.

Lời giải:

Ta có:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn D.

Câu 5: Tìm nguyên hàm của hàm số y = x3 + 2tan2x

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải:

Ta có:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

⇒ Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn B.

Câu 6: Tìm nguyên hàm của hàm số:

Cách tìm nguyên hàm của hàm số lượng giác cực hay Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải:

Ta có:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

⇒ Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn B.

Câu 7: Tìm nguyên hàm F(x) của hàm số: y = 3sin6x – 4cos8x biết tại x = 0 thì F(x) = 1?

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải:

Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Do tại x = 0 ta có F(x) = 1 nên:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Vậy nguyên hàm cần tìm là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn C.

Câu 8: Nguyên hàm của hàm số y = 4.cos(-2x) + 4sin(-4x) có dạng F(x) = a.sin2x + b.cos4x. Tính a + b?

A. –1. B. 3. C. 2. D. -2.

Lời giải:

Ta có nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn B.

Câu 9: Tìm nguyên hàm của hàm số:

Cách tìm nguyên hàm của hàm số lượng giác cực hay Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải:

Ta có:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn B.

Câu 10: Tìm nguyên hàm của hàm số sau:

Cách tìm nguyên hàm của hàm số lượng giác cực hay Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải:

Ta có:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

⇒ Nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn A.

Câu 11: Tìm nguyên hàm của hàm số y = tan8x.dx

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải:

Ta có nguyên hàm của hàm số đã cho là:

∫tan8x dx = ∫[tan6x.(1 + tan2x) - tan4(1 + tan2x) + tan2x.(1 + tan2x) - (1 + tan2x) + 1]dx

= ∫(tan6x - tan4x + tan2 - 1)dtanx + ∫dx.

Chọn D.

Câu 12: Tìm nguyên hàm của hàm số y = cosx.cos3x.cos2x

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Lời giải:

Ta có:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Do đó, nguyên hàm của hàm số đã cho là:

Cách tìm nguyên hàm của hàm số lượng giác cực hay

Chọn A.

D. Bài tập tự luyện

Bài 1. Tìm nguyên hàm của hàm số: y = 6sinx + 8cosx.

Bài 2. Tìm nguyên hàm của hàm số: y = 5cosx – 4sinx.

Bài 3. Tìm nguyên hàm của hàm số: y = x + cot2x.

Bài 4. Tìm nguyên hàm của hàm số: y = 7sin2x – cos5x + lne.

Bài 5.Tìm nguyên hàm của hàm số: y = tan2x + 3.

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

  • Bảng công thức nguyên hàm đầy đủ
  • Nguyên hàm của hàm đa thức, hàm phân thức
  • Nguyên hàm của hàm số mũ, hàm số logarit
  • Tìm nguyên hàm của hàm đa thức bằng phương pháp đổi biến số
  • Tìm nguyên hàm của hàm phân thức bằng phương pháp đổi biến số
  • Tìm nguyên hàm của hàm số mũ, logarit bằng phương pháp đổi biến số
  • Tìm nguyên hàm của hàm số lượng giác bằng phương pháp đổi biến số
  • Tìm nguyên hàm của hàm chứa căn thức bằng phương pháp đổi biến số
  • Tìm nguyên hàm của hàm lượng giác bằng phương pháp nguyên hàm từng phần
  • Tìm nguyên hàm của hàm số mũ, logarit bằng phương pháp nguyên hàm từng phần
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:

  • 30 đề toán, lý hóa, anh, văn 2025 (100-170k/1 cuốn)
  • 30 đề Đánh giá năng lực đại học quốc gia HN 2025 (cho 2k7)
  • 30 đề Đánh giá năng lực đại học quốc gia tp. Hồ Chí Minh 2025 (cho 2k7)

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

1000 Đề thi bản word THPT quốc gia cá trường 2023 Toán, Lí, Hóa....

4.5 (243)

799,000đ

199,000 VNĐ

Đề thi thử DGNL (bản word) các trường 2023

4.5 (243)

799,000đ

199,000 VNĐ

xem tất cả Trang trước Trang sau nguyen-ham-tich-phan-va-ung-dung.jsp Giải bài tập lớp 12 sách mới các môn học
  • Giải Tiếng Anh 12 Global Success
  • Giải sgk Tiếng Anh 12 Smart World
  • Giải sgk Tiếng Anh 12 Friends Global
  • Lớp 12 Kết nối tri thức
  • Soạn văn 12 (hay nhất) - KNTT
  • Soạn văn 12 (ngắn nhất) - KNTT
  • Giải sgk Toán 12 - KNTT
  • Giải sgk Vật Lí 12 - KNTT
  • Giải sgk Hóa học 12 - KNTT
  • Giải sgk Sinh học 12 - KNTT
  • Giải sgk Lịch Sử 12 - KNTT
  • Giải sgk Địa Lí 12 - KNTT
  • Giải sgk Giáo dục KTPL 12 - KNTT
  • Giải sgk Tin học 12 - KNTT
  • Giải sgk Công nghệ 12 - KNTT
  • Giải sgk Hoạt động trải nghiệm 12 - KNTT
  • Giải sgk Giáo dục quốc phòng 12 - KNTT
  • Giải sgk Âm nhạc 12 - KNTT
  • Giải sgk Mĩ thuật 12 - KNTT
  • Lớp 12 Chân trời sáng tạo
  • Soạn văn 12 (hay nhất) - CTST
  • Soạn văn 12 (ngắn nhất) - CTST
  • Giải sgk Toán 12 - CTST
  • Giải sgk Vật Lí 12 - CTST
  • Giải sgk Hóa học 12 - CTST
  • Giải sgk Sinh học 12 - CTST
  • Giải sgk Lịch Sử 12 - CTST
  • Giải sgk Địa Lí 12 - CTST
  • Giải sgk Giáo dục KTPL 12 - CTST
  • Giải sgk Tin học 12 - CTST
  • Giải sgk Hoạt động trải nghiệm 12 - CTST
  • Giải sgk Âm nhạc 12 - CTST
  • Lớp 12 Cánh diều
  • Soạn văn 12 Cánh diều (hay nhất)
  • Soạn văn 12 Cánh diều (ngắn nhất)
  • Giải sgk Toán 12 Cánh diều
  • Giải sgk Vật Lí 12 - Cánh diều
  • Giải sgk Hóa học 12 - Cánh diều
  • Giải sgk Sinh học 12 - Cánh diều
  • Giải sgk Lịch Sử 12 - Cánh diều
  • Giải sgk Địa Lí 12 - Cánh diều
  • Giải sgk Giáo dục KTPL 12 - Cánh diều
  • Giải sgk Tin học 12 - Cánh diều
  • Giải sgk Công nghệ 12 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 12 - Cánh diều
  • Giải sgk Âm nhạc 12 - Cánh diều

Từ khóa » Nguyên Hàm Tan^8x