Các Dạng Bài Tập Mệnh đề, Tập Hợp Chọn Lọc Có Lời Giải - Toán Lớp 10
Có thể bạn quan tâm
Các dạng bài tập Mệnh đề, Tập hợp chọn lọc có lời giải
Với Các dạng bài tập Mệnh đề, Tập hợp chọn lọc có lời giải Toán lớp 10 tổng hợp các dạng bài tập, bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Mệnh đề, Tập hợp từ đó đạt điểm cao trong bài thi môn Toán lớp 10.
Tổng hợp lý thuyết chương Mệnh đề - Tập hợp
- Xác định tính đúng sai của mệnh đề
- Mệnh đề và suy luận toá học
- Các bài toán liên quan đến mệnh đề phủ định
- Tập hợp và cách xác định tập hợp
- Các phép toán trên tập hợp
- Các bài toán về các tập hợp số
- Các bài toán liên quan đến số gần đúng và sai số
Chuyên đề: Mệnh đề
- Dạng 1: Xác định tính đúng sai của mệnh đề Xem chi tiết
- Dạng 2: Phát biểu mệnh đề điều kiện cần và đủ Xem chi tiết
- Dạng 3: Phủ định mệnh đề Xem chi tiết
- Bài tập tổng hợp về mệnh đề (có đáp án) Xem chi tiết
Chuyên đề: Tập hợp và các phép toán trên tập hợp
- Lý thuyết Tập hợp và các phép toán trên tập hợp Xem chi tiết
- Dạng 1: Cách xác định tập hợp Xem chi tiết
- Dạng 2: Các phép toán trên tập hợp Xem chi tiết
- Dạng 3: Giải toán bằng biểu đồ Ven Xem chi tiết
- Bài tập Tập hợp và các phép toán trên tập hợp (có đáp án) Xem chi tiết
Chuyên đề: Số gần đúng và sai số
- Lý thuyết Số gần đúng và sai số Xem chi tiết
- Bài tập Số gần đúng và sai số (có đáp án) Xem chi tiết
Bài tập tổng hợp Chương Mệnh đề, Tập hợp (có đáp án)
- Bài tập chương Mệnh đề, Tập hợp (Tự luận) Xem chi tiết
- Bài tập chương Mệnh đề, Tập hợp (Trắc nghiệm) Xem chi tiết
Cách xác định tính đúng sai của mệnh đề
Phương pháp giải
+ Mệnh đề: xác định giá trị (Đ) hoặc (S) của mệnh đề đó.
+ Mệnh đề chứa biến p(x): Tìm tập hợp D của các biến x để p(x) (Đ) hoặc (S).
Ví dụ minh họa
Ví dụ 1: Trong các câu dưới đây, câu nào là mệnh đề, câu nào không phải là mệnh đề? Nếu là mệnh đề, hãy xác định tính đúng sai.
a) x2 + x + 3 > 0
b) x2 + 2 y > 0
c) xy và x + y
Hướng dẫn:
a) Đây là mệnh đề đúng.
b) Đây là câu khẳng định nhưng chưa phải là mệnh đề vì ta chưa xác định được tính đúng sai của nó (mệnh đề chứa biến).
c) Đây không là câu khẳng định nên nó không phải là mệnh đề.
Ví dụ 2: Xác định tính đúng sai của các mệnh đề sau:
1) 21 là số nguyên tố
2) Phương trình x2 + 1 = 0 có 2 nghiệm thực phân biệt
3) Mọi số nguyên lẻ đều không chia hết cho 2
4) Tứ giác có hai cạnh đối không song song và không bằng nhau thì nó không phải là hình bình hành.
Hướng dẫn:
1) Mệnh đề sai vì 21 là hợp số.
2) Phương trình x2 + 1 = 0 vô nghiệm nên mệnh đề trên sai
3) Mệnh đề đúng.
4) Tứ giác có hai cạnh đối không song song hoặc không bằng nhau thì nó không phải là hình bình hành nên mệnh đề sai.
Ví dụ 3: Trong các câu sau đây, câu nào là mệnh đề, câu nào không phải là mệnh đề. Nếu là mệnh đề thì nó thuộc loại mệnh đề gì và xác định tính đúng sai của nó:
a) Nếu a chia hết cho 6 thì a chia hết cho 2.
b) Nếu tam giác ABC đều thì tam giác ABC có AB = BC = CA.
c) 36 chia hết cho 24 nếu và chỉ nếu 36 chia hết cho 4 và 36 chia hết cho 6.
Hướng dẫn:
a) Là mệnh đề kéo theo (P ⇒ Q) và là mệnh đề đúng, trong đó:
P: "a chia hết cho 6" và Q: "a chia hết cho 2".
b) Là mệnh đề kéo theo (P ⇒ Q) và là mệnh đề đúng, trong đó:
P: "Tam giác ABC đều" và Q: "Tam giác ABC có AB = BC = CA"
c) Là mệnh đề tương đương (P⇔Q) và là mệnh đề sai, trong đó:
P: "36 chia hết cho 24" là mệnh đề sai
Q: "36 chia hết cho 4 và 36 chia hết cho 6" là mệnh đề đúng.
Cách giải bài tập các phép toán trên tập hợp
Phương pháp giải
Hợp của 2 tập hợp:
x ∈ A ∪ B ⇔
Giao của 2 tập hợp
x ∈ A ∩ B ⇔
Hiệu của 2 tập hợp
x ∈ A \ B ⇔
Phần bù
Khi B ⊂ A thì A\B gọi là phần bù của B trong A, kí hiệu là CA B.
Ví dụ minh họa
Ví dụ 1: Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A ∪ B;A ∩ B;A \ B;B \ A.
Hướng dẫn:
1. A ∪ B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.
2. A ∩ B: tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.
3. A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường em.
4. B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường em.
Ví dụ 2: Cho hai tập hợp:
A = { x ∈ R | x2 - 4x + 3 = 0};
B = { x ∈ R | x2 - 3x + 2 = 0}.
Tìm A ∪ B ; A ∩ B ; A \ B ; B \ A.
Hướng dẫn:
Ta có: A={1;3} và B={1;2}
A ∪ B={1;2;3}
A ∩ B={1}
A \ B={3}
B \ A={2}
Ví dụ 3: Cho đoạn A=[-5;1] và khoảng B =(-3; 2). Tìm A ∪ B; A ∩ B.
Hướng dẫn:
A ∪ B=[-5;2)
A ∩ B=(-3;1]
Ví dụ 4: Cho A={1,2,3,4,5,6,9}; B={1,2,4,6,8,9} và C={3,4,5,6,7}
a) Tìm hai tập hợp (A \ B) ∪ (B \ A) và (A ∪ B) \\ (A ∩ B). Hai tập hợp nhận được có bằng nhau không?
b) Hãy tìm A ∩ (B \ C) và (A ∩ B) \ C. Hai tập hợp nhận được có bằng nhau không?
Hướng dẫn:
a) A \ B={3,5}; B \ A={8}
⇒ (A \ B) ∪ (B \ A)={3;5;8}
A ∪ B={1,2,3,4,5,6,8,9}
A ∩ B={1,2,4,6,9}
⇒ (A ∪ B) \\ (A ∩ B)= {3;5;8}
Do đó: (A \ B) ∪ (B \ A)=(A ∪ B) \\ (A ∩ B)
b) B \ C={1,2,8,9}
⇒ A ∩ (B \ C) ={1,2,9}.
A ∩ B={1,2,4,6,9}
⇒ (A ∩ B) \ C ={1,2,9}.
Do đó A ∩ (B \ C) =(A ∩ B) \ C
Ví dụ 5: Tìm tập hợp A, B biết:
Hướng dẫn:
⇒ A = {1,5,7,8} ∪ {3,6,9} = {1,3,5,6,7,8,9}
B={2,10} ∪ {3,6,9} = {2,3,6,9,10}
Cách xác định, cách viết tập hợp
Phương pháp giải
1: Với tập hợp A, ta có 2 cách:
Cách 1: liệt kê các phần tử của A: A={a1; a2; a3;..}
Cách 2: Chỉ ra tính chất đặc trưng cho các phần tử của A
2:Tập hợp con
Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì ta nói A là một tập hợp con của B, kí hiệu là A ⊂ B.
A ⊂ B ⇔ ∀x : x ∈ A ⇒ x ∈ B.
A ⊄ B ⇔ ∀x : x ∈ A ⇒ x ∉ B.
Tính chất:
1) A ⊂ A với mọi tập A.
2) Nếu A ⊂ B và B ⊂ C thì A ⊂ C.
3) ∅ ⊂ A với mọi tập hợp A.
Ví dụ minh họa
Ví dụ 1: Viết mỗi tập hợp sau bằng cách liệt kê các phần tử của nó:
a) A={x ∈ R|(2x - x2 )(2x2 - 3x - 2)=0}.
b) B={n ∈ N|3 < n2 < 30}.
Hướng dẫn:
a) Ta có:
(2x - x2 )(2x2 - 3x - 2) =0 ⇔
⇔
⇒
b) 3 < n2 < 30 ⇒ √3 < |n| < √30
Do n ∈ N nên n ∈ {2;3;4;5}
⇒ B = {2;3;4;5}.
Ví dụ 2: Viết mỗi tập hợp sau bằng cách chỉ rõ tính chất đặc trưng cho các phần tử của nó:
a) A = {2; 3; 5; 7}
b) B = {-3; -2; -1; 0; 1; 2; 3}
c) C = {-5; 0; 5; 10; 15}.
Hướng dẫn:
a) A là tập hợp các số nguyên tố nhỏ hơn 10.
b) B là tập hơp các số nguyên có giá trị tuyệt đối không vượt quá 3.
B={x ∈ Z||x| ≤ 3}.
c) C là tập hợp các số nguyên n chia hết cho 5, không nhỏ hơn -5 và không lớn hơn 15.
C={n ∈ Z|-5 ≤ n ≤ 15; n ⋮ 5}.
Ví dụ 3: Cho tập hợp A có 3 phần tử. Hãy chỉ ra số tập con của tập hợp A.
Hướng dẫn:
Giả sử tập hợp A={a;b;c}. Các tập hợp con của A là:
∅ ,{a},{b},{c},{a;b},{b;c},{c;a},{a;b;c}
Tập A có 8 phần tử
Chú ý: Tổng quát, nếu tập A có n phần tử thì số tập con của tập A là 22 phần tử.
Từ khóa » Các Bài Toán Về Mệnh đề Lớp 10
-
Bài Tập Mệnh đề Lớp 10 Chọn Lọc, Có Lời Giải
-
Các Dạng Bài Tập Toán Về Mệnh đề Và Phương Pháp Giải - Toán Lớp 10
-
Bài Tập Mệnh đề Toán Học Lớp 10
-
Các Dạng Bài Tập Toán Về Mệnh đề Và Tập Hợp - Lớp 10
-
Các Dạng Bài Tập Mệnh đề - Tập Hợp
-
Các Bài Toán Liên Quan đến Mệnh đề Phủ định Và Cách Giải - Haylamdo
-
Các Dạng Bài Tập Về Mệnh đề Toán Lớp 10 - Deha Law
-
Các Bài Toán Về Mệnh đề - Lớp 10 - Thầy Nguyễn Mạnh Cường
-
Lý Thuyết Và Bài Tập Mệnh đề - Toán Lớp 10 - Trường Quốc Học
-
Các Dạng Bài Tập Mệnh đề - Tập Hợp | Toán Lớp 10
-
Bài Tập Chuyên đề Mệnh đề -tập Hợp Lớp 10 Chọn Lọc
-
Tổng Hợp Các Dạng Toán Về Mệnh đề Và Các Phép Toán Tập Hợp
-
Bài Tập Tự Luận Môn Toán Lớp 10 Về Mệnh đề
-
Lý Thuyết Về Mệnh đề | SGK Toán Lớp 10