Các Tính Chất Cơ Bản Của Bất đẳng Thức
Có thể bạn quan tâm
Chúng tôi trên mạng xã hội
Đăng nhập Đăng ký- Trang nhất
- Chương trình
- Bất đẳng thức
Các tính chất cơ bản của bất đẳng thức
Thứ bảy - 06/02/2016 21:15 Các tính chất cơ bản của bất đẳng thức. Các bất đẳng thức cơ bản cần nhớ. Các tính chất cơ bản của bất đẳng thức $\hbox{(BĐT)}$. Khi chứng minh các bất đẳng thức, ta hay dùng các tính chất sau $\left( a \right)\;\;\;\;\left\{ \begin{gathered} x \geqslant y \hfill \\ y \geqslant z \hfill \\ \end{gathered} \right. \Rightarrow x \geqslant z,\;\;\;\forall x,y,z \in \mathbb{R}.\;\;\;\;\;\;\;\;\;\;\;\left( b \right)\;\;\;\;\left\{ \begin{gathered} x \geqslant y \hfill \\ a \geqslant b \hfill \\ \end{gathered} \right. \Rightarrow x + a \geqslant y + b,\;\;\;\forall x,y,a,b \in \mathbb{R}.$ $\left( c \right)\;\;\;\;x \geqslant y \Rightarrow x + z \geqslant y + z,\;\;\;\forall x,y,z \in \mathbb{R}.\;\;\;\left( d \right)\;\;\;\;\left\{ \begin{gathered} x \geqslant y \hfill \\ a \geqslant b \hfill \\ \end{gathered} \right. \Rightarrow xa \geqslant yb,\;\;\;\forall x,y \in \mathbb{R},\;\;\;a,b \in {\mathbb{R}^ + }.$ $\left( e \right)\;\;\;{x^2} \geqslant 0,\;\;\;\forall x \in \mathbb{R}.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {e'} \right)\;\;\;{A_1}x_1^2 + {A_2}x_2^2 + ... + {A_n}x_n^2 \geqslant 0,\;\forall x \in \mathbb{R},{A_i} \in {\mathbb{R}^ + }.$ Chú ý. $\left( {e'} \right)$ là tính chất hay dùng nhất, và dấu $=$ xảy ra khi và chỉ khi ${x_1} = {x_2} = ... = {x_n} = 0.$ Để chứng minh BĐT, ta thường hay dùng các tính chất trên để biến đổi BĐT cần chứng minh về một điều hiển nhiên đúng. Ví dụ 1. Chứng minh với mọi số thực $x \ne 0$ ta luôn có $x + \frac{1}{x} \geqslant 2.\;\;\;\;\;\left( 1 \right)$ Giải. Ta có $$ \left( 1 \right) \Leftrightarrow \frac{{{x^2} + 1}}{x} \geqslant 2 \Leftrightarrow {x^2} + 1 \geqslant 2x \Leftrightarrow {x^2} - 2x + 1 \geqslant 0 \Leftrightarrow {\left( {x - 1} \right)^2} \geqslant 0.$$ BĐT cuối cùng hiển nhiên đúng. Như vậy ta đã chứng minh xong BĐT $\left( 1 \right)$. Theo tính chất $\left( 5' \right)$ thì dấu bằng của $\left( 1 \right)$ xảy ra khi $x - 1 = 0 \Leftrightarrow x = 1.$ Ví dụ 2. Chứng minh bất đẳng thức $\frac{a}{b} + \frac{b}{a} \geqslant 2,\;\;\forall a,b \in {\mathbb{R}^ + }.\;\;\;\;\;\;\left( 2 \right)$ Giải. Ta có $$\frac{a}{b} + \frac{b}{a} \geqslant 2 \Leftrightarrow \frac{{{a^2} + {b^2}}}{{ab}} \geqslant 2 \Leftrightarrow {a^2} + {b^2} \geqslant 2ab \Leftrightarrow {a^2} + {b^2} - 2ab \geqslant 0 \Leftrightarrow {\left( {a - b} \right)^2} \geqslant 0.$$ Điều này luôn đúng với mọi, do đó BĐT $\left( 2 \right)$ xem như được chứng minh xong. Dấu $=$ xảy ra khi $a - b \Leftrightarrow a = b.$ Ví dụ 3. Chứng minh bất đẳng thức ${a^2} + {b^2} + 1 \geqslant 2a,\;\;\;\forall a,b \in \mathbb{R}.\;\;\;\;\;\;\;\left( 3 \right)$ Giải. Ta có ${a^2} + {b^2} + 1 \geqslant 2a \Leftrightarrow {a^2} - 2a + 1 + {b^2} \geqslant 0 \Leftrightarrow {\left( {a - 1} \right)^2} + {b^2} \geqslant 0.$ BĐT cuối cùng luôn đúng, do đó $\left( 3 \right)$ được chứng minh xong. Dấu $=$ xảy ra khi $\left\{ \begin{gathered} a - 1 = 0 \hfill \\ b = 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} a = 1 \hfill \\ b = 0 \hfill \\ \end{gathered} \right..$ Ví dụ 4. Chứng minh bất đẳng thức ${a^2} + {b^2} + {c^2} \geqslant ab + bc + ba,\;\;\;\forall a,b,c \in \mathbb{R}\;\;\;\;\;\;\;\left( 4 \right).$ Giải. Nhân hai vế của $\left( 4 \right)$ cho $2$ ta được $$\begin{gathered} 2{a^2} + 2{b^2} + 2{c^2} \geqslant 2ab + 2bc + 2ba \Leftrightarrow \left( {{a^2} - 2ab + {b^2}} \right) + \left( {{b^2} - 2bc + {c^2}} \right) + \left( {{c^2} - 2ac + {a^2}} \right) \geqslant 0 \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \Leftrightarrow {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} \geqslant 0. \hfill \\ \end{gathered} $$ BĐT cuối cùng luôn đúng, dấu $=$ xảy ra khi $\left\{ \begin{gathered} a - b = 0 \hfill \\ b - c = 0 \hfill \\ c - a = 0 \hfill \\ \end{gathered} \right. \Leftrightarrow a = b = c.$ Ví dụ 5. Chứng minh bất đẳng thức ${a^3} + {b^3} \geqslant {a^2}b + a{b^2}\;\;\;\forall a \geqslant 0,b \geqslant 0.\;\;\;\;\;\;\left( 5 \right)$ Giải. Ta có $$\left( 3 \right) \Leftrightarrow \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right) \geqslant ab\left( {a + b} \right) \Leftrightarrow \left( {a + b} \right)\left[ {\left( {{a^2} - ab + {b^2}} \right) - ab} \right] \geqslant 0 \Leftrightarrow \left( {a + b} \right){\left( {a - b} \right)^2} \geqslant 0.$$ Vì $a \geqslant 0,b \geqslant 0$ nên $a + b \geqslant 0$. Suy ra BĐT cuối cùng luôn đúng, nghĩa là ta đã chứng minh xong BĐT $\left( 5 \right)$. Dấu $=$ xảy ra khi $a - b = 0 \Leftrightarrow a = b.$ Bài tập (nhiều bài tập hơn khi đăng ký học tại Trung tâm Cùng học toán)Tác giả bài viết: Cùng Học Toán
Tổng số điểm của bài viết là: 4 trong 1 đánh giá
Xếp hạng: 4 - 1 phiếu bầu Click để đánh giá bài viết TweetGóp ý hoặc một bài toán của Quý học viên hoặc Quý Phụ Huynh
Sắp xếp theo bình luận mới Sắp xếp theo bình luận cũ Sắp xếp theo số lượt thích Mã an toànNhững tin mới hơn
- Bất đẳng thức trung bình QM⩾AM⩾GM⩾HM cho ba số (21/02/2016)
- Bất đẳng thức trung bình QM⩾AM⩾GM⩾HM cho hai số (07/02/2016)
- Các bất đẳng thức cơ bản (06/02/2016)
-
06 02.2016
Hình chiếu vuông góc của đường thẳng lên mặt phẳngHình chiếu vuông góc của đường thẳng lên mặt phẳng trong...
-
25 08.2016
Phương trình tiếp tuyến song song với một đường thẳngViết phương trình tiếp tuyến song song với một đường thẳng...
-
06 02.2016
Khoảng cách giữa hai đường thẳng chéo nhauCông thức tính khoảng cách giữa hai đường thẳng chéo nhau....
-
05 02.2016
Hình chiếu vuông góc của điểm lên mặt phẳngHình chiếu vuông góc của điểm lên mặt phẳng. Tìm toạ độ hình...
-
05 02.2016
Đối xứng của một điểm qua mặt phẳngĐối xứng một điểm qua một mặt. Tìm toạ điểm đối xứng của một...
-
28 02.2016
Đề thi và đáp án tuyển sinh đại học, cao đẳng năm 2007Đề thi và đáp án tuyển sinh đại học, cao đẳng năm 2007
-
28 02.2016
Đề thi và đáp án tuyển sinh đại học, cao đẳng năm 2006Đề thi và đáp án tuyển sinh đại học, cao đẳng năm 2006
-
10 03.2016
Sách giáo khoa toán lớp 12Sách giáo khoa môn toán lớp 12. Sách bài tập môn toán lớp...
-
09 03.2016
Sách giáo khoa toán lớp 11Sách giáo khoa toán lớp 11. Sách bài tập toán lớp 11.
-
09 03.2016
Sách giáo khoa toán lớp 6Sách giáo khoa toán lớp 6. Sách bài tập toán lớp 6.
Chúng tôi trên mạng xã hội
Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giâyThành viên đăng nhập
Hãy đăng nhập thành viên để trải nghiệm đầy đủ các tiện ích trên site Đăng nhậpĐăng ký thành viên
Để đăng ký thành viên, bạn cần khai báo tất cả các ô trống dưới đây- Bạn thích môn thể thao nào nhất
- Món ăn mà bạn yêu thích
- Thần tượng điện ảnh của bạn
- Bạn thích nhạc sỹ nào nhất
- Quê ngoại của bạn ở đâu
- Tên cuốn sách "gối đầu giường"
- Ngày lễ mà bạn luôn mong đợi
Từ khóa » Tính Chất Bdt
-
Lý Thuyết Khái Niệm Và Tính Chất Của Bất đẳng Thức - Toán Học
-
Nhắc Lại định Nghĩa, Tính Chất Cơ Bản Của Bất đẳng Thức
-
Tính Chất Của Bất đẳng Thức, Bất đẳng Thức Cauchy (Cô- Si) Và BĐT ...
-
Bất đẳng Thức Là Gì ? Tính Chất Của Bất đẳng Thức ? Kèm Ví Dụ Minh ...
-
Bất Đẳng Thức - Khái Niệm, Định Nghĩa, Tính Chất Và Ví Dụ Hay
-
Bất đẳng Thức Là Gì? Các Tính Chất Chính Của Bất đẳng Thức
-
Tính Chất Của Bất đẳng Thức
-
Bất đẳng Thức – Wikipedia Tiếng Việt
-
Định Nghĩa, Tính Chất Cơ Bản Của Bất đẳng Thức - Học Toán 123
-
Các Tính Chất Của Bất đẳng Thức: - Chuyên đề Toán THCS
-
Chứng Minh Bất đẳng Thức Dựa Vào định Nghĩa Và Tính Chất
-
Lý Thuyết Bất đẳng Thức | SGK Toán Lớp 10
-
Tính Chất Của Bất Đẳng Thức Là Gì, Phân Loại, Chứng Minh Bất ...