Cách Chứng Minh Phương Trình Bậc 3 Có 2 Nghiệm
Có thể bạn quan tâm
Hàm số và đồ thị là một kiến thức vô cùng quan trọng trong chương trình Toán trung học cơ sở. Vì vậy hôm nay Chúng Tôi xin gửi đến bạn đọc bài viết về ứng dụng của đồ thị hàm số bậc 3 trong việc giải các bài tập toán. Đây là một trong những dạng thường xuất hiện ở các đề thi cuối cấp cũng như tuyển sinh lên lớp 10. Cùng tham khảo nhé:
Nội dung chính Show- I. Đồ thị hàm số bậc 3 - Lý thuyết cơ bản
- 1. Các bước khảo sát hàm số bất kì.
- 2. Khảo sát hàm số bậc 3.
- 3. Dạng đồ thị hàm số bậc 3:
- II. Các bài toán ứng dụng đồ thị hàm số bậc 3.
- Video liên quan
I. Đồ thị hàm số bậc 3 - Lý thuyết cơ bản
1. Các bước khảo sát hàm số bất kì.
Xét hàm y=f(x), để khảo sát hàm số, ta thực hiện theo các bước như sau:
- Tìm tập xác định.
- Xét sự biến thiên:
- Tìm đạo hàm y
- Tìm ra các điểm làm y=0 hoặc y không xác định.
- Xét dấu y, từ đó kết luận chiều biến thiên.
- Xác định cực trị, tìm giới hạn, vẽ bảng biến thiên.
- Vẽ đồ thị hàm số.
2. Khảo sát hàm số bậc 3.
Cho hàm số bậc 3 dạng:
- Tập xác định: D=R
- Sự biến thiên
- Tính đạo hàm:
- Giải phương trình y=0.
- Xét dấu y, từ đó suy ra chiều biến thiên.
- Tìm giới hạn. Chú ý: hàm bậc ba nói riêng và các hàm đa thức nói chung không có tiệm cận ngang và tiệm cận đứng. Sau đó vẽ bảng biến thiên.
- Vẽ đồ thị: ta tìm các điểm đặc biệt thuộc đồ thị, thường là giao điểm của đồ thị với trục tung, trục hoành.
- Khi nhận xét, chú ý rằng đồ thị hàm bậc 3 nhận 1 điểm làm tâm đối xứng (là nghiệm của phương trình y=0), gọi là điểm uốn của đồ thị hàm số bậc 3.
3. Dạng đồ thị hàm số bậc 3:
Cho hàm số bậc 3 dạng:
Đạo hàm
Ta xảy ra các trường hợp bên dưới:
- Phương trình y=0 tồn tại hai nghiệm phân biệt:
- Phương trình y=0 có nghiệm kép.
- Phương trình y=0 vô nghiệm.
II. Các bài toán ứng dụng đồ thị hàm số bậc 3.
Ví dụ 1: Khảo sát đồ thị của hàm số bậc 3 sau: y=x3+3x2-4.
Hướng dẫn:
Bài này là một bài kinh điển, để khảo sát, lần lượt thực hiện theo các bước:
Tập xác định: D=R
Sự biến thiên:
- Giải phương trình đạo hàm bằng 0:
- Trong khoảng và , y>0 nên y đồng biến ở hai khoảng này.
- Trong khoảng , y0. Hiển nhiên B, C bị loại.
Hàm số này không có cực trị, nên loại đáp án A.
Vậy đáp án D đúng.
Nhận xét: bài toán này, các bạn có thể lý luận theo một cách khác, để ý hàm số đi qua điểm (0;1), vậy loại đáp án C. Mặt khác, đồ thị đi qua (1;2) nên loại A, B. Vậy suy ra đáp án D đúng.
Ví dụ 3: Cho hàm số bậc 3: có đồ thị:
Tìm đáp án chính xác:
- a0, c>0, d>0.
- a0, b0, d0.
Hướng dẫn:
Từ hình vẽ đồ thị, dễ dàng nhận thấy a0.
Lại có: :
- Hàm số đạt cực tiểu tại x=0, nên y(0)=0, suy ra c=0. Loại đáp án A.
lúc này y=0, suy ra x=0 hoặc x=-2b/3a. Lại dựa vào đồ thị, nhận thấy hoành độ điểm cực đại dương nên -2b/3a>0, kết hợp với a0.
Vậy đáp án đúng là D.
Ví dụ 4: Cho hàm số . Xét 4 đồ thị sau:
Hãy lựa chọn mệnh đề chính xác:
- Khi a>0 và f(x)=0 có nghiệm kép, đồ thị hàm số sẽ là (IV).
- Khi a khác 0 và f(x)=0 tồn tại hai nghiệm phân biệt thì đồ thị (II) xảy ra.
- Đồ thị (I) khi a0 và f(x)=0 vô nghiệm.
Hướng dẫn:
Đồ thị (I) khi a>0, vậy loại C.
Đồ thị (II) khi a0, f(x)=0 vô nghiệm.
Đồ thị (IV) xảy ra khi a
Từ khóa » Chứng Minh Pt Bậc 3 Có 2 Nghiệm
-
Phương Trình Bậc 3 Có 2 Nghiệm
-
Chứng Minh Phương Trình Bậc 3 Có 2 Nghiệm - 123doc
-
Điều Kiện Mà Cái Phương Trình Bậc 3 Có 2 Nghiệm âm ...
-
Chứng Minh Rằng Một Phương Trình Bậc 3 Luôn Có ít Nhất Một ...
-
Chứng Minh Hàm Số Bậc 3 Luôn Có 1 Nghiệm - Đại Số
-
[toan11]Chứng Tỏ Phương Trình Bậc 3 Luôn Có Nghiệm.
-
Cách Giải Phương Trình Bậc 3 Tổng Quát | Tăng Giáp
-
Biện Luận Nghiệm Phương Trình Bậc 3 Bằng đại Số
-
Chứng Minh Phương Trình Có Nghiệm Dựa Vào Tính Liên Tục Của Hàm Số
-
Cách Chứng Minh Phương Trình Bậc 3 Có Nghiệm - Học Tốt
-
Cách Giải Phương Trình Bậc 3 Có 2 Nghiệm - Học Tốt
-
Cách Giải Phương Trình Bậc 3 Mà Học Sinh Nào Cũng Phải Biết
-
Cách Giải Phương Trình Bậc 3 Tổng Quát
-
PHƯƠNG TRÌNH BẬC BA - Blog Math 123