Cách Tìm ảnh Của đường Thẳng Qua Phép Quay Cực Hay

Cách tìm ảnh của đường thẳng qua phép quay cực hay

A. Phương pháp giải

● Cho đường thẳng Δ:ax+by+c = 0

Cách tìm ảnh của đường thẳng qua phép quay cực hay

Cách 1: Sử sụng tính chất hai đường thẳng vuông góc ( nêu ở trên)

Cách 2: Sử dụng phương pháp quý tích, với các lưu ý dưới đây:

Cách tìm ảnh của đường thẳng qua phép quay cực hay

B. Ví dụ minh họa

Ví dụ 1: Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x + 2y - 5 = 0 , điểm I(3;1), phép quay Q(I,90°)(d) = d'. Xác định phương trình đường thẳng d'.

Hướng dẫn giải:

Ta có: I ∈ d ⇒ I ∈ d'

Đường thẳng d' có dạng: 2x - y + c = 0.

Vì d' đi qua Inên 2.3 - 1 + c = 0 ⇒ c = -5 ⇒ d': 2x - y - 5 = 0

Ví dụ 2: Trong mặt phẳng tọa độ Oxy, tìm ảnh của đường thẳng d: 6x - 5y + 18 = 0 qua phép quay Q(O,90°).

Hướng dẫn giải:

Cách 1.

d'⊥d nên phương trình có dạng 5x + 6y + c = 0

Lấy M(-3;0) ∈ d, ta có Q(O,90°)(M) = M'(0;-3), M' ∈ d' ⇒ c = 18, hay d': 5x + 6y + 18 = 0.

Cách 2.

Ta có phương trình d:6x - 5y + 18 = 0

Gọi d’ là ảnh của d qua Q(O,90°). Khi đó với M(x;y) ∈ d ⇒ M'(x';y'⁡) ∈ d'

Cách tìm ảnh của đường thẳng qua phép quay cực hay

Thay (*) vào phương trình của d ta được: d: 6y' - 5(-x') + 18 = 0 ⇔ d': 5x + 6y + 18 = 0

Vậy: d': 5x + 6y + 18 = 0.

Ví dụ 3: Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x - y + 3 = 0. Viết phương trình đường thẳng d' là ảnh của d qua phép quay tâm O góc quay -90°.

Hướng dẫn giải:

Cách 1. Qua phép quay tâm O góc quay -90° đường thẳng d biến thành đường thẳng d' vuông góc với d.

Phương trình đường thẳng d' có dạng: x + 2y + c = 0.

Lấy A(0;3) ∈ d. Qua phép quay tâm O góc quay -90°, điểm A(0;3) biến thành điểm B(3;0) ∈ d'. Khi đó c = -3.

Vậy phương trình đường d' là x + 2y - 3 = 0.

Cách 2. Ta có phương trình d: 2x - y + 3 = 0

Gọi d’ là ảnh của d qua Q(O,-90°). Khi đó với M(x;y) ∈ d ⇒ M'(x';y'⁡) ∈ d'

Cách tìm ảnh của đường thẳng qua phép quay cực hay

Thay (*) vào phương trình của d ta được: 2(-y') - x + 3 = 0 ⇔ d': x' + 2y' - 3 = 0

Vậy: d': x + 2y - 3 = 0.

Hỏi đáp VietJack

C. Bài tập trắc nghiệm

Câu 1. Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng a và b có phương trình lần lượt là 2x + y + 5 = 0 và x - 2y - 3 = 0. Nếu có phép quay biến đường thẳng này thành đường thẳng kia thì số đo của góc quay φ (0 ≤ φ ≤ 180°) là:

A. 45°.

B. 60°.

C. 90°.

D. 120°.

Câu 2. Trong mặt phẳng tọa độ Oxy cho hai đường thẳng a và b có phương trình lần lượt là 4x + 3y + 5 = 0 và x + 7y-4 = 0. Nếu có phép quay biến đường thẳng này thành đường thẳng kia thì số đo của góc quay φ (0 ≤ φ ≤ 180°) là:

A. 45°.

B. 60°.

C. 90°.

D. 120°.

Câu 3. Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x + y + 1 = 0, điểm I(1;-2), phép quay Q(I,90°)(d) = d'. Xác định phương trình đường thẳng d'.

A. -x + y - 2 = 0.

B. x - y - 1 = 0.

C. x - y + 3 = 0.

D. x - y - 3 = 0.

Câu 4. Trong mặt phẳng tọa độ Oxy, cho I(2;1) và đường thẳng d: 2x + 3y + 4 = 0. Tìm ảnh của d qua Q(I,45°)

Cách tìm ảnh của đường thẳng qua phép quay cực hay

Câu 5. Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 3x - y + 2 = 0. Viết phương trình đường thẳng d' là ảnh của d qua phép quay tâm O góc quay -90°.

A. d': x + 3y + 2 = 0.

B. d': x + 3y-2 = 0.

C. d': 3x - y-6 = 0.

D. d': x - 3y-2 = 0.

Câu 6. Cho hai đường thẳng bất kỳ d và d'. Có bao nhiêu phép quay biến đường thẳng d thành đường thẳng d'?

A. 0.

B. 1.

C. 2.

D. Vô số.

Câu 7. Trong mặt phẳng với hệ tọa độ0xy, phép quay tâm I(4;-3)góc quay 180° biến đường thẳng d: x + y - 5 = 0 thành đường thẳng d' có phương trình

A. x - y + 3 = 0.

B. x + y + 3 = 0.

C. x + y + 5 = 0.

D. x + y - 3 = 0.

Câu 8. Tìm ảnh của đường thẳng d: 5x - 3y + 15 = 0 qua phép quay Q(O,90°).

A. d': x + y + 15 = 0.

B. d': 3x + 5y + 5 = 0.

C. d': 3x + y + 5 = 0.

D. d': 3x + 5y + 15 = 0.

Câu 9. Trong mặt phẳng Oxy, cho đường thẳng Δ:x - y + 2 = 0. Hãy viết phương trình đường thẳng d là ảnh của đường thẳng Δ qua phép quay tâm O, góc quay 90°.

A. d:x + y + 2 = 0.

B. d:x - y + 2 = 0.

C. d:x + y - 2 = 0.

D. d:x + y + 4 = 0.

Từ khóa » Tìm Pt đường Thẳng Qua Phép Quay