Cấp Số Nhân – Wikipedia Tiếng Việt
Có thể bạn quan tâm
Trong toán học, một cấp số nhân (tiếng Anh: geometric progression hoặc geometric sequence) là một dãy số thoả mãn điều kiện kể từ số hạng thứ hai, mỗi số hạng đều là tích của số hạng đứng ngay trước nó với một số không đổi. Hằng số này được gọi là công bội của cấp số nhân.
Như vậy, một cấp số nhân có dạng
trong đó r là công bội và a là số hạng đầu tiên.
Số hạng tổng quát
[sửa | sửa mã nguồn]Số hạng thứ n của cấp số nhân được tính bằng công thức
trong đó n là số nguyên thoả mãn | |
Công bội khi đó là | |
hoặc | trong đó n là số nguyên thoả mãn |
Ví dụ
[sửa | sửa mã nguồn]- Cấp số nhân với công bội là 2 và phần tử đầu tiên là 1
Cấp số nhân với công bội 2/3 và phần tử đầu tiên là 729:
729 (1, 2/3, 4/9, 8/27, 16/81, 32/243, 64/729,....) = 729, 486, 324, 216, 144, 96, 64,....Cấp số nhân với công bội −1 và phần tử đầu là 3
3 (1, −1, 1, −1, 1, −1, 1, −1, 1, −1,....) = 3, −3, 3, −3, 3, −3, 3, −3, 3, −3,....Sự thay đổi của cấp số nhân tuỳ theo giá trị của công bội.
Nếu công bội là:- Số dương: Các số hạng luôn có dấu cố định.
- Số âm: các số hạng là đan dấu giữa âm và dương..
- 0, mọi số hạng bằng 0.
- Lớn hơn 1, các số hạng tăng theo hàm mũ tới vô cực dương hoặc âm.
- 1, là một dãy không đổi.
- Giữa 1 và −1 nhưng khác không, chúng giảm theo hàm mũ về 0.
- −1, là một dãy đan dấu.
- Nhỏ hơn −1, chúng tăng theo hàm mũ về vô cực (dương và âm).
Tổng
[sửa | sửa mã nguồn]Tổng các phần tử của cấp số nhân:
Nhân cả hai vế với (1-r):
vì tất cả các số hạng khác đã loại trừ lẫn nhau. Từ đó:
Chú ý: Nếu tổng không khởi đầu từ 0 mà từ m > 0 và m < n ta có
Vi phân của tổng theo biến r là tổng dạng
Tổng vô hạn
[sửa | sửa mã nguồn]Nếu cấp số nhân có vô hạn phần tử thì tổng là hội tụ khi khi và chỉ khi giá trị tuyệt đối của công bội nhỏ hơn một (| r | < 1).
Khi tổng không khởi đầu từ k = 0, ta có
Cả hai công thức chỉ đúng khi | r | < 1. Công thức sau cũng đúng trong mọi đại số Banach, khi chuẩn (norm) của r nhỏ hơn 1, và trong trường của các số p-adic nếu |r|p < 1. Cũng như trong tổng hữu hạn, ta có vi phân của tổng. Chẳng hạn,
Tất nhiên công thức chỉ đúng khi | r | < 1.
Số phức
[sửa | sửa mã nguồn]Công thức tính tổng của cấp số nhân cũng đúng khi các phần tử là các số phức. Điều này được sử dụng, cùng với Công thức Euler, để tính một vài tổng như:
.Từ đó có:
Xem thêm
[sửa | sửa mã nguồn]- Dãy (toán học)
- Thomas Robert Malthus
- Cấp số cộng
Tham khảo
[sửa | sửa mã nguồn]Liên kết ngoài
[sửa | sửa mã nguồn]
| ||||||
---|---|---|---|---|---|---|
Dãy số nguyên |
| |||||
Tính chấtcủa các dãy |
| |||||
Tính chấtcủa các chuỗi |
| |||||
Các chuỗi cụ thể |
| |||||
Các loại chuỗi |
| |||||
Chuỗi siêu bội |
| |||||
|
Từ khóa » Tổng Chuỗi Cấp Số Nhân
-
Chuỗi Số. Tổng Của Chuỗi (Series. The Total Sum Of Series)
-
Phương Pháp Tính Tổng Của Chuỗi Số | Phần 1 - YouTube
-
201. Chuỗi Cấp Số Nhân Dưới Dạng Hàm Số | Giải Tích Nâng Cao BC
-
Công Thức Tính Tổng Cấp Số Nhân
-
Hướng Dẫn Giải Bài Tập Chuỗi - Toán Cao Cấp - SlideShare
-
CÔNG THỨC CẤP SỐ NHÂN
-
Tìm Tổng Của Cấp Số Nhân Vô Hạn 27 , 9 , 3 , 1 | Mathway
-
[Giải Tích III] Tính Tổng Chuỗi Số Hay Và Khó
-
8+ Công Thức Cấp Số Nhân đầy đủ - Đạo Hàm
-
Chương 6 CHUỖI SỐ VÀ CHUỖI LŨY THỪA
-
Một Số Bài Toán Tính Tổng Của Chuỗi - TaiLieu.VN
-
[PDF] Hướng Dẫn Giải Bài Tập Chuỗi_CBM 2009
-
Công Thức Cấp Số Nhân, Tổng Cấp Số Nhân Và Tổng Bội Cấp Số Nhân