Cho A,b,c Thỏa Mãn A B C=0. Chứng Minh Rằng A3 B3 C3=3abc - Olm

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Thư viện số
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM

Chính thức mở đề thi thử tốt nghiệp THPT trên máy tính từ 27/12/2025, xem ngay.

OLM Class tuyển sinh lớp bứt phá học kỳ II! Đăng ký ngay

  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
PT Phạm Thanh Lâm 3 tháng 1 2022

Cho  a, b, c > 0 . Chứng minh rằng a3 +b3 +c3 >=3abc. 

#Hỏi cộng đồng OLM #Toán lớp 8 4 NL Nguyễn Lê Phước Thịnh 3 tháng 1 2022

\(\Leftrightarrow a^3+b^3+c^3-3abc>=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc>=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)>=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac>=0\)(vì a+b+c>0)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2>=0\)(luôn đúng)

Đúng(1) NH Nguyễn Hoàng Minh 3 tháng 1 2022

\(a^3+b^3+c^3\ge3abc\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\ge0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\ge0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

Vì \(a,b,c>0\Leftrightarrow a+b+c>0\)

Lại có \(a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

Nhân vế theo vế ta được đpcm

Dấu \("="\Leftrightarrow a=b=c\)

Đúng(0) Xem thêm câu trả lời PT Pham Trong Bach 22 tháng 5 2019

Cho a + b + c = 0. Chứng minh rằng a 3   +   b 3   +   c 3  = 3abc.

#Hỏi cộng đồng OLM #Toán lớp 8 2 CM Cao Minh Tâm 22 tháng 5 2019

Đúng(0) VT Võ Tài Hưng 21 tháng 12 2021

a3+b3+c3= (a+b)3-3ab(a+b)+c3Thay a+b=-c vào, ta được: a3 + b3 +c3 = (-c)3 -3ab(-c) +c3 = 3abc (đpcm)

Đúng(0) Xem thêm câu trả lời PT Phạm Thành Long 14 tháng 7 2023 - olm

Cho a,b,c là ba số thực bất kì thỏa mãn a+b+c=0 Chứng minh rằng a3 + b3 + c3 = 0  

#Hỏi cộng đồng OLM #Toán lớp 7 1 AH Akai Haruma Giáo viên 14 tháng 7 2023

Lời giải:

$a+b+c=0\Rightarrow a+b=-c$

Ta có:$a^3+b^3+c^3=(a+b)^3-3a^2b-3ab^2+c^3$$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=(-c)^3+3abc+c^3=3abc$ chứ không phải bằng $0$ nhé. 

Đúng(1) NH Nguyễn Hoàng Anh 29 tháng 10 2021

Chứng minh rằng nếu a3 +b3+c3 =3abc thì a+b+c =0 hoặc a = b= c

#Hỏi cộng đồng OLM #Toán lớp 8 2 NL Nguyễn Lê Phước Thịnh 29 tháng 10 2021

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Đúng(1) NH Nguyễn Hoàng Minh 29 tháng 10 2021

\(a^3+b^3+c^3=3abc\\ \Leftrightarrow a^3+b^3+c^3-3abc=0\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Vậy \(a^3+b^3+c^3=3abc\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Đúng(3) Xem thêm câu trả lời NH Nguyễn Hà Quang Minh 5 tháng 4 2023 cho a,b,c là số thức dương thỏa mãn a+b+c=1. Chứng minh2(a3 + b3 + c3) + 3abc ≥ ab + bc +...Đọc tiếp

cho a,b,c là số thức dương thỏa mãn a+b+c=1. Chứng minh

2(a3 + b3 + c3) + 3abc ≥ ab + bc + ca

#Hỏi cộng đồng OLM #Toán lớp 9 1 NL Nguyễn Lê Phước Thịnh 6 tháng 4 2023

a+b+c=1; a>0; b>0; c>0

=>a>=b>=c>=0

=>a(a-c)>=b(b-c)>=0

=>a(a-b)(a-c)>=b(a-b)(b-c)

=>a(a-b)(a-c)+b(b-a)(b-c)>=0

mà (a-c)(b-c)*c>=0 và c(c-a)(c-b)>=0 

nên a(a-b)(a-c)+b(b-a)(b-c)+(a-c)(b-c)*c>=0

=>a^3+b^3+c^3+3acb>=a^2b+a^2c+b^2c+b^2a+c^2b+c^2a

=>a^3+b^3+c^3+6abc>=(a+b+c)(ab+bc+ac)

=>a^3+b^3+c^3+6abc>=(ab+bc+ac)

mà a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)

nên 2(a^3+b^3+c^3)+3acb>=a^2+b^2+c^2>=ab+bc+ac(ĐPCM)

Đúng(0) PT Pham Trong Bach 23 tháng 10 2017 Cho a + b + c = 0. Chứng minh a 3 + b 3 + c 3 = 3 a b c ...Đọc tiếp

Cho a + b + c = 0. Chứng minh a 3 + b 3 + c 3 = 3 a b c

#Hỏi cộng đồng OLM #Toán lớp 8 1 CM Cao Minh Tâm 23 tháng 10 2017

+) Ta có: a 3 + b 3 = a + b 3 - 3 a b a + b

Thật vậy, VP = a + b 3  – 3ab (a + b)

= a 3 + 3 a 2 b + 3 a b 2 + b 3 - 3 a 2 b - 3 a b 2

= a 3 + b 3  = VT

Nên  a 3 + b 3 + c 3 = a + b 3 - 3 a b a + b + c 3  (1)

Ta có: a + b + c = 0 ⇒ a + b = - c (2)

Thay (2) vào (1) ta có:

a 3 + b 3 + c 3 = - c 3 - 3 a b - c + c 3 = - c 3 + 3 a b c + c 3 = 3 a b c

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Đúng(0) PT Pham Trong Bach 7 tháng 5 2018 Biết a + b + c = 0. Chứng minh a 3   +   b 3   +   c 3   =   3 a b c . ...Đọc tiếp

Biết a + b + c = 0. Chứng minh a 3   +   b 3   +   c 3   =   3 a b c .

#Hỏi cộng đồng OLM #Toán lớp 8 1 CM Cao Minh Tâm 7 tháng 5 2018

Ta có: a + b + c = 0

⇒ a + b = -c ⇒ (a + b)3 = (-c)3

⇒ a3 + b3 + 3ab(a + b) = -c3 ⇒ a3 + b3 + 3ab(-c) + c3 = 0

⇒ a3 + b3 + c3 = 3abc

Đúng(0) TN Tuyển Nguyễn Đình 25 tháng 7 2018

Bài 8: a)Chứng minh rằng ( a + b + c)3- a3 – b3 – c3 = 3( a +b)(b +c)( c+ a)

b)a3 +b3 +c3 – 3abc = ( a + b + c)( a2 +b2 + c2)

#Hỏi cộng đồng OLM #Toán lớp 8 2 Y Yukru 22 tháng 8 2018

a) Áp dụng nhiều lần công thức \(\left(x+y\right)^3=x^3-y^3+3xy\left(x+y\right)\), ta có:

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=a^3+b^3+3ab\left(a+b\right)+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(Đpcm\right)\)

b) Ta có:

\(a^3+b^3+c^3-3abc\)

\(=a^3+3ab\left(a+b\right)+b^2+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

Mình nghĩ bằng thế này mới đúng, bạn chắc ghi sai đề rồi bucminh

Đúng(0) TP Trần Phương Nhi 22 tháng 8 2018

a) Ta có: (a + b + c)3 - a3 - b3 - c3 = [ (a + b + c)3 - a3 ] - ( b3 + c3)

= (a + b + c - a) ( a2 + b2 + c2 + 2ab + 2bc + 2ac + a2 + ab + ac + a2) - (b + c) ( b2 - bc + c3)

= (b + c) ( 3a2 + b2 + c2 + 3ab + 2bc + 3ac) - (b + c) ( b2 - bc + c3)

= ( b + c) ( 3a2 + b2 + c2 + 3ab + 2bc + 3ac - b2 + bc - c3)

= ( b + c) ( 3a2 + 3ab + 3bc + 3ac)

= 3 (b + c) [a (a + b) + c (a + b)]

= 3 (b + c) (a + b) (a + c) (đpcm)

Đúng(0) Xem thêm câu trả lời R ✰๖ۣۜRεɗ♜๖ۣۜSтαɾ✰☣ 9 tháng 7 2019 - olm

Cho a + b + c = 0. Chứng minh a3 + b3 + c3 = 3abc.

#Hỏi cộng đồng OLM #Toán lớp 8 3 KN Kiệt Nguyễn 9 tháng 7 2019

Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath

Tham khảo ở link trên nhé.

Đúng(0) ZC zZz Cool Kid_new zZz 9 tháng 7 2019

\(a+b+c=0\)

\(-a=b+c\)

\(\Rightarrow-a^3=\left(b+c\right)^3\)

\(\Rightarrow-a^3=b^3+c^3+3bc\left(b+c\right)\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Đúng(0) Xem thêm câu trả lời L Lelemalin 21 tháng 8 2021

Bài 1:

a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc

b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0

#Hỏi cộng đồng OLM #Toán lớp 8 3 NL Nguyễn Lê Phước Thịnh 21 tháng 8 2021

a: Ta có: \(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a+b+c=0\)

Đúng(3) LL Lấp La Lấp Lánh 21 tháng 8 2021

a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)

Đúng(1) Xem thêm câu trả lời Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • SV Sinh Viên NEU 14 GP
  • O ◥◣︿◢◤𝓷𝓪𝓶𝓴𝓱ô𝓷𝓰𝓷𝓱â𝔂╰(*°▽°*)╯ 4 GP
  • QT Quoc Tran Anh Le 4 GP
  • PT Phạm Thị Minh Phương 4 GP
  • NL Nguyễn Lê Phước Thịnh 2 GP
  • A 𐙚⋆°.CHâU~Nè𐙚 2 GP
  • NT Nguyễn Thị Minh Hằng 2 GP
  • NQ Nguyễn Quỳnh Chi 2 GP
  • HN Hiền Nguyễn Thị 2 GP
  • PD Phạm Duy Kiên 2 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học trực tuyến OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » Cho A+b+c=0 Cmr A3+b3+c3=3abc