Cho Biết : Ax By=c Bx Cy=a Cx Ay=b Cm A^3 B^3 C^3=3abc - Hoc24
HOC24
Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng- Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Lớp học
- Lớp 12
- Lớp 11
- Lớp 10
- Lớp 9
- Lớp 8
- Lớp 7
- Lớp 6
- Lớp 5
- Lớp 4
- Lớp 3
- Lớp 2
- Lớp 1
Môn học
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Đạo đức
- Tự nhiên và xã hội
- Khoa học
- Lịch sử và Địa lý
- Tiếng việt
- Khoa học tự nhiên
- Hoạt động trải nghiệm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Chủ đề / Chương
Bài học
HOC24
Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng - Tất cả
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Câu hỏi
Hủy Xác nhận phù hợp Chọn lớp Tất cả Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1 Môn học Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Mới nhất Mới nhất Chưa trả lời Câu hỏi hay
- Tiểu Thư Ma Kết
Cho biết : ax +by=c
bx+cy=a
cx +ay=b
Cm a^3+b^3+c^3=3abc
Xem chi tiết Lớp 8 Toán Bài 5: Những hằng đẳng thức đáng nhớ (Tiếp) 1 0
Gửi Hủy
TFBoys 5 tháng 8 2017 lúc 21:42 có điều kiện x, y > 0 ko bạn?
Đúng 0 Bình luận (2)
Gửi Hủy
- Hà Thị Quỳnh
Biết ax+by=c ; bx+cy=a ; cx+ay=b
Chứng minh rằng : a^3+b^3+c^3=3abc
Xem chi tiết Lớp 8 Toán Câu hỏi của OLM 1 0
Gửi Hủy
Nguyễn Gia Huy 28 tháng 2 2023 lúc 20:21 \(\left\{{}\begin{matrix}ax+by=c\\bx+cy=a\\cx+ay=b\end{matrix}\right.\)
Cộng đại số => \(ax+by+bx+cy+cx+ay=a+b+c\)
<=>\(\left(a+b+c\right)x+\left(a+b+c\right)y=a+b+c\)
<=>\(\left(a+b+c\right)\left(x+y\right)=a+b+c\)
<=>\(\left(a+b+c\right)\left(x+y\right)-\left(a+b+c\right)=0\)
<=>\(\left(a+b+c\right)\left(x+y-1\right)=0\)
+TH1:\(\left(a+b+c\right)=0\)
=>\(a+b=-c\)
=>\(\left(a+b\right)^3=-c^3\)
=>\(a^3+b^3+3a^2b+3ab^2=-c^3\)
=>\(a^3+b^3+3ab\left(a+b\right)=-c^3\)
=>\(a^3+b^3+c^3=-3ab\left(a+b\right)\)
Mà a+b=-c => -3ab(a+b)=-3ab(-c)=3abc
=>\(a^3+b^3+c^3=3abc\)
+TH2:x+y=1
<=>y=1-x
=>\(\left\{{}\begin{matrix}ax+b\left(1-x\right)=c\\bx+c\left(1-x\right)=a\\cx+a\left(1-x\right)=b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}ax+b-bx=c\\bx+c-cx=a\\cx+a-ax=b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(a-b\right)x=c-b\\\left(b-c\right)x=a-c\\\left(c-a\right)x=b-a\end{matrix}\right.\)
Nếu \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)
=>a=b=c
\(\Rightarrow a^3+b^3+c^3=3a^3\\ 3abc=3a^3\\ \Rightarrow a^3+b^3+c^3=3abc\)
Nếu \(\left\{{}\begin{matrix}a-b\ne0\\b-c\ne0\\c-a\ne0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=\dfrac{c-b}{a-b}\left(1\right)\\x=\dfrac{a-c}{b-c}\left(2\right)\\x=\dfrac{b-a}{c-a}\end{matrix}\right.\)
Ta có : (1)=(2)=x suy ra \(\dfrac{c-b}{a-b}=\dfrac{a-c}{b-c}\Rightarrow\dfrac{b-c}{b-a}=\dfrac{a-c}{b-c}\Rightarrow\left(b-c\right)\left(b-c\right)=\left(a-c\right)\left(b-a\right)^{ }\Rightarrow b^2-2bc+c^2=a^2+ab-bc+ca\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\\ \\ \\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=>a=b=c(đưa về trường hợp như trên)
Đúng 3 Bình luận (0)
Gửi Hủy
- Nguyễn Thu Huyền
-
Cho hai số x,y thỏa mãn ax+by=c; bx+cy=a; cx+ay=b. Chứng minh a3+b3+c3=3abc.
Xem chi tiết Lớp 8 Toán Violympic toán 8 1 0
Gửi Hủy
Akai Haruma Giáo viên 23 tháng 9 2018 lúc 23:28 Lời giải:
\(\left\{\begin{matrix} ax+by=c\\ bx+cy=a\\ cx+ay=b\end{matrix}\right.\Rightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(\Rightarrow x(a+b+c)+y(a+b+c)=a+b+c\)
\(\Rightarrow (x+y-1)(a+b+c)=0\)
Vì $x,y$ luôn thỏa mãn nên \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
Khi đó:
\(a^3+b^3+c^3=a^3+3ab(a+b)+b^3-3ab(a+b)+c^3\)
\(=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)
Ta có đpcm.
Đúng 2 Bình luận (3)
Gửi Hủy
- Huy Dang Quang
Cho x,y là 2 số thỏa mãn {ax+by=c;bx+cy=a;cx+ay=b}. Chứng minh : a3+b3+c3=3abc
Xem chi tiết Lớp 8 Toán Câu hỏi của OLM 0 0
Gửi Hủy
- Hoàng Lê Minh
giúp mình nha. ai nhanh có tick :cmr nếu a+bx/b+cy=b+cx/c+ay=c+ax/a+by thì a^3+b^3+c^3-3abc=0
thank cìu
Xem chi tiết Lớp 7 Toán Câu hỏi của OLM 0 0
Gửi Hủy
- Tống Minh Ngọc
1.cho x,y thỏa mãn: ax+by=c,bx+cy=a,cx+by=b
CMR:a^3+b^3+c^3=3abc.
2.cho a,b,c khác 0 sao cho:ay-bx/c=cx-az/b=bz-cy/a
CMR:(ax+by+cz)=(x^2+y^2+z^2)(a^2+b^2+c^2)
Xem chi tiết Lớp 8 Toán Câu hỏi của OLM 3 0
Gửi Hủy
Linh Bùi 26 tháng 5 2017 lúc 16:00 Học hành thế này! Tớ mách cô Hiền nhé!
Đúng 0 Bình luận (0)
Gửi Hủy
Yen Nhi \(1.\)
Theo đề ra, ta có:
\(ax+by=c\)
\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(cx+by=b\)
\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)
Khi đó ta có:
\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)
Đúng 0 Bình luận (0) Khách vãng lai đã xóa
Gửi Hủy
Yen Nhi Đặt: \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}=G\)
\(\Rightarrow G=\frac{cay-cbx}{c^2}=\frac{bcx-baz}{b^2}=\frac{abz-acy}{a^2}\)
\(\Rightarrow G=\frac{cay-cbx+bcx-baz+abz-acy}{c^2+b^2+a^2}\)
\(\Rightarrow G=0\)
\(\Rightarrow\left(ay-bx\right)^2=\left(cx-az\right)^2=\left(bz-cy\right)^2=0\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
Đúng 0 Bình luận (0) Khách vãng lai đã xóa
Gửi Hủy
- Nguyễn Phương Thảo
Bài 1 Tính giá trị biểu thức
A= ax+bx+cx+ay+by+cy+az+bz+ cz biết a+b+c=-3 và x+y+z=-6
B= ax-bx-cx-ay+by+cy-az+bz+ cz biết a-b-c=0 và x-y-z=2016
Xem chi tiết Lớp 6 Toán Câu hỏi của OLM 1 0
Gửi Hủy
Trợ Giúp về Toán 29 tháng 10 2018 lúc 2:54 a) Ta có: A = ax + bx + cx + ay + by + cy + az + bz + cz
= x.(a+b+c) + y.(a+b+c) + z.(a+b+c)
= (a+b+c).(x+y+z) (1)
Lại có: a + b + c = -3 (2)
x + y + z = -6 (3)
Từ (1) ; (2) ; (3) => A = -3.(-6) = 18
Vậy A = 18
b) B = ax - bx - cx - ay + by + cy - az + bz +cz
= x.(a-b-c) - y.(a-b-c) - z.(a-b-c)
= (a-b-c).(x-y-z)
Lại có: a - b - c = 0 ; x - y - z = 2016
=> B = 0.2016 = 0
Vậy B = 0
Đúng 0 Bình luận (0)
Gửi Hủy
- Lê Tài Bảo Châu
Cho x,y là hai số thực thỏa mãn \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\)
Chứng minh rằng : \(a^3+b^3+c^3=3abc\)
Xem chi tiết Lớp 8 Toán Câu hỏi của OLM 6 0
Gửi Hủy
T.Ps 1 tháng 8 2019 lúc 9:20 #)Giải :
Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)
\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)
\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)
\(\Rightarrowđpcm\)
Đúng 0 Bình luận (0)
Gửi Hủy
alibaba nguyễn Bài giải thiếu trường hợp \(x+y-1=0\) rồi
Đúng 0 Bình luận (0)
Gửi Hủy
T.Ps 1 tháng 8 2019 lúc 9:29 #)Góp ý :
alibaba nguyễn hình như đề bài yêu cầu cm thì chỉ cần cm thui là đc chứ ???
Đúng 0 Bình luận (0)
Gửi Hủy Xem thêm câu trả lời
- Đức Đại Nguyễn
Cho x,y thỏa mãn:
ax + by = c
bx + cy = a
cx + ay = b
Tính giá trị biểu thức: a^3 + b^3 + c^3 = 3abc
Xem chi tiết Lớp 8 Toán Câu hỏi của OLM 0 0
Gửi Hủy
- Nguyễn Việt Hoàng
Cho hệ phương trình \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\) (a;b;c là tham số). Chứng minh rằng điều kiện cần và đủ của hệ phương trình đã cho có nghiệm là: \(a^3+b^3+c^3=3abc\)
Xem chi tiết Lớp 9 Toán Câu hỏi của OLM 1 0
Gửi Hủy
Võ Thạch Đức Tín 3 tháng 9 2018 lúc 20:00 Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\Rightarrow\left(ax+by\right)+\left(bx+cy\right)+\left(cx+ay\right)=a+b+c\)
\(\Rightarrow\left(x+y\right)\left(a+b+c\right)=a+b+c\)
\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y-1=0\\a+b+c=0\end{cases}}\)
Xét \(a+b+c=0\), ta có :
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Xét \(x+y-1=0\),ta có :
\(x=1-y\)
\(\Rightarrow\hept{\begin{cases}ax+by=c\\bx+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}a-ay+by=c\\b-by+cy=a\end{cases}}\Rightarrow\hept{\begin{cases}\left(b-a\right)y=c-a\\\left(c-b\right)y=a-b\end{cases}}\Rightarrow\frac{b-a}{b-c}=\frac{c-a}{a-b}\)
\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\Rightarrow a^3+b^3+c^3=3abc\)
Đúng 0 Bình luận (1)
Gửi Hủy Từ khóa » Cx + Ay = B
-
Cx+Ay=B - Solution
-
The Three Straight Lines Ax + By = C, Bx + Cy = A And Cx + Ay ... - Toppr
-
If Lines Ax + By + C = 0,bx + Cy + A = 0 And Cx + Ay + B = 0 Are ... - Toppr
-
The Three Straight Lines Ax+by=c, Bx+cy=a And Cx+ay=b Are Collinear, If
-
The Three Straight Lines Ax+by=c, Bx+cy=a And Cx +ay =b ... - Doubtnut
-
If The Straight Lines Ax+by+c=0, Bx+cy+a=0 And Cx+ay+b ... - Doubtnut
-
Ax+by+cz=b; (2): Cx+ay+bz=a; (3):bx+cy+az=c . How Do I Solve The ...
-
The Three Straight Lines Ax+by=c, Bx+cy=a And Cx +ay =b ... - YouTube
-
Q. The Three Straight Lines Ax+by=c,bx+cy=a And Cx+ay=b Are ...
-
Simplify Ax-bx+cx+ay-by-cy - Mathway
-
Biết Ax By=c ; Bx Cy=a ; Cx Ay=bChứng Minh Rằng : A^3 B^3 C^3=3abc
-
Solved 9. [-15 Points] DETAILS Consider The Graph Of Cx + Ay - Chegg
-
Giả Sử Có X,y Thỏa Mãn Hệ Ax+by=c Bx+cy=a Cx+by=b Cm Rằng A^3+ ...