Cho Hàm Số F( X ) = X^2 + 1 X^2 + 5x + 6. Hàm Số F( X ) Liên Tục Trên ...

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Cho hàm số f( x ) = x^2 + 1 x^2 + 5x + 6. Hàm số f( x ) liên tục trên khoảng nào sau đây? Cho hàm số f( x ) = x^2 + 1 x^2 + 5x + 6. Hàm số f( x ) liên tục trên khoảng nào sau đây?

Câu hỏi

Nhận biết

Cho hàm số \(f\left( x \right) = {{{x^2} + 1} \over {{x^2} + 5x + 6}}\). Hàm số \(f\left( x \right)\) liên tục trên khoảng nào sau đây?

A. \(\left( { - \infty ;3} \right)\) B. \(\left( {2;3} \right)\) C. \(\left( { - 3;2} \right)\) D. \(\left( { - 3; + \infty } \right)\)

Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

TXĐ: \(D = R\backslash \left\{ { - 3; - 2} \right\} = \left( { - \infty ; - 3} \right) \cup \left( { - 3; - 2} \right) \cup \left( { - 2; + \infty } \right)\) nên theo định lí 1, hàm số liên tục trên các khoảng \(\left( { - \infty ; - 3} \right);\,\,\left( { - 3; - 2} \right);\,\,\left( { - 2; + \infty } \right)\). Vì \(\left( {2;3} \right) \subset \left( { - 2; + \infty } \right) \Rightarrow \) Hàm số liên tục trên \(\left( {2;3} \right)\).

Chọn B.

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Phương trình có 1 họ nghiệm

    Chi tiết
  • (x = pi   6 + kpi   3;x = pi 

    Chi tiết
  • Phương trình có 1 họ nghiệm

    Chi tiết
  • Phương trình có 1 họ nghiệm

    Chi tiết
  • Phương trình có 1 họ nghiệm

    Chi tiết
  • Phương trình có 2 họ nghiệm là: x = pi +kpi; x = k2pi/3

    Chi tiết
  • #VALUE!

    Chi tiết
  • Phương trình có 1 họ nghiệm

    Chi tiết
  • x = kpi; x = pi/3 + k2pi/3

    Chi tiết
  • x = pi/2 + k2 pi                                      x = p

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Hàm Số Fx Bằng X Bình Cộng 1 Trên X Bình Cộng 5 X + 6 Liên Tục Trên Khoảng Nào Dưới đây