Cho Hình Chóp S.ABCD Có đáy Là Hình Thoi Cạnh A, Góc BAD = 60 độ...

Đăng nhập Facebook GOOGLE Google IMG

CHỌN BỘ SÁCH BẠN MUỐN XEM

Hãy chọn chính xác nhé!

Trang chủ Lớp 11 Toán

Câu hỏi:

23/07/2024 13,083

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, BAD^=600,SA = avà SA vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SCD) bằng:

A. 21a7

Đáp án chính xác

B. 15a7

C. 21a3

D. 15a3

Xem lời giải Xem lý thuyết Câu hỏi trong đề: Trắc nghiệm Khoảng cách có đáp án Bắt Đầu Thi Thử

Trả lời:

verified Giải bởi Vietjack

VietJack

VietJack

Câu trả lời này có hữu ích không?

0 0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA=a152 và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC).

Xem đáp án » 04/08/2021 11,322

Câu 2:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a,BC = a3. Hình chiếu vuông góc của S trên mặt đáy là trung điểm H của cạnh AC. Biết SB = a2. Tính theo a khoảng cách từ điểm H đến mặt phẳng (SAB) ?

Xem đáp án » 04/08/2021 6,861

Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC); góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60o. Gọi M là trung điểm của cạnh AB. Tính khoảng cách d từ B đến mặt phẳng (SMC).

Xem đáp án » 04/08/2021 5,744

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc 60o. Tính khoảng cách d từ điểm D đến mặt phẳng (SBC).

Xem đáp án » 04/08/2021 4,927

Câu 5:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N lần lượt là trung điểm của AB, AD. Tính khoảng cách từ điểm D đến mặt phẳng (SCN) theo a.

Xem đáp án » 04/08/2021 4,348

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

Xem đáp án » 04/08/2021 4,258

Câu 7:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a,AC = a3. Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC).

Xem đáp án » 04/08/2021 3,822

Câu 8:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên SA = a2 và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD).

Xem đáp án » 03/08/2021 3,764

Câu 9:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)

Xem đáp án » 04/08/2021 3,600

Câu 10:

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, AD = a, AB = 2a, BC = 3a, SA = 2a, H là trung điểm cạnh AB, SH là đường cao của hình chóp S.ABCD. Tính khoảng cách từ điểm A đến mặt phẳng (SCD).

Xem đáp án » 04/08/2021 3,277

Câu 11:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60o. Gọi O là giao điểm của AC và BD. Tính khoảng cách từ O đến mặt phẳng (SAB).

Xem đáp án » 04/08/2021 3,094

Câu 12:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SB2=SC3=a. Cạnh SA vuông góc (ABCD), khoảng cách từ điểm A đến mặt phẳng (SCD) bằng:

Xem đáp án » 03/08/2021 2,104

Câu 13:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA = a3 và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC).

Xem đáp án » 04/08/2021 431

Câu 14:

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính theo a khoảng cách từ điểm A đến mặt phẳng (A'BC).

Xem đáp án » 04/08/2021 295 Xem thêm các câu hỏi khác »

LÝ THUYẾT

Mục lục nội dung

Xem thêm

I. Khoảng cách từ một điểm đến một đường thẳng, một mặt phẳng.

1. Khoảng cách từ một điểm đến một đường thẳng

Cho điểm O và đường thẳng a. Trong mặt phẳng (O; a), gọi H là hình chiếu vuông góc của O lên a. Khi đó, khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến đường thẳng a.

Kí hiệu: d(O; a).

Bài 5 : Khoảng cách (ảnh 1)

Ví dụ 1. Cho hình lập phương ABCD. A'B'C'D' cạnh a. Tính khoảng cách từ B tới đường thẳng DB'.

Lời giải:

Bài 5 : Khoảng cách (ảnh 1)

Từ giả thuyết ta suy ra: BD=  BC2+​ CD2=a2

Gọi H là hình chiếu của B lên DB' ta có: BH = d (B, DB').

Xét tam giác BB'D vuông tại B ta có:

1BH2=1B'B2+1BD2=1a2+1a22=32a2

⇒BH=a63

2. Khoảng cách từ một điểm đến một mặt phẳng

Cho điểm O và mặt phẳng (α). Gọi H là hình chiếu vuông góc của O lên mặt phẳng (α). Khi đó khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến mặt phẳng (α) và được kí hiệu là d(O; (α)).

Bài 5 : Khoảng cách (ảnh 1)

Ví dụ 2. Cho hình chóp S. ABC có SA⊥  (ABC), ∆ABC là tam giác đều cạnh a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng (SBC).

Lời giải:

Bài 5 : Khoảng cách (ảnh 1)

Gọi D là trung điểm BC. Do tam giác ABC đều nên AD  ⊥BC (1).

Trong tam giác SAD, kẻ AH  ⊥SD (2).

Do SA⊥ABC⇒SA⊥BCAD⊥BCSA∩AD=A⇒BC⊥SAD⇒SBC⊥SAD(3).

Từ (2) và (3), ta suy ra AH vuông góc với (SBC) nên d(A ; (SBC))= AH.

Theo giả thiết, ta có SA = AB = a, AD=a32 (đường cao trong tam giác đều cạnh a).

Tam giác SAD vuông nên

1AH2=1SA2+1AD2⇔1AH2 =1a2+43a2⇔1AH2=73a2⇒AH=a37

II. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song.

1. Khoảng cách giữa đường thẳng và măt phẳng song song.

- Định nghĩa: Cho đường thẳng a song song với mặt phẳng (α). Khoảng cách giữa đường thẳng a và mặt phẳng (α) là khoảng cách từ một điểm bất kì thuộc a đến mặt phẳng (α).

Kí hiệu là d(a; (α)) .

Bài 5 : Khoảng cách (ảnh 1)

2. Khoảng cách giữa hai mặt phẳng song song.

- Định nghĩa: Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì của mặt phẳng này đến mặt phẳng kia.

- Kí hiệu: d((α); (β)).

Như vậy: d((α); (β)) = d(M; (β)) = d(M’; (α)).

Bài 5 : Khoảng cách (ảnh 1)

III. Đường vuông góc chung và khoảng cách hai đường thẳng chéo nhau.

1. Định nghĩa.

a) Đường thẳng ∆ cắt hai đường thẳng chéo nhau a, b và cùng vuông góc với mỗi đường thẳng ấy được gọi là đường vuông góc chung của a và b.

b) Nếu đường vuông góc chung ∆ cắt hai đường thẳng chéo nhau a, b lần lượt tại M; N thì độ dài đoạn thẳng MN gọi là khoảng cách giữa hai đường thẳng chéo nhau a và b.

Bài 5 : Khoảng cách (ảnh 1)

2. Cách tìm đường vuông góc chung của hai đường thẳng chéo nhau.

- Cho hai đường thẳng chéo nhau a và b. Gọi (β) là mặt phẳng chứa b và song song với a; a’ là hình chiếu vuông góc của a trên mặt phẳng (β).

Vì a// (β) nên a// a’. Do đó; a’ cắt b tại 1 điểm là N

Gọi (α) là mặt phẳng chứa a và a’; ∆ là đường thẳng đi qua N và vuông góc với (β). Khi đó, (α) vuông góc (β).

Như vậy.∆ nằm trong (α) nên cắt đường thẳng a tại M và cắt đường thẳng b tại N.Đồng thời, ∆ vuông góc với cả a và b.

Do đó, ∆ là đường vuông góc chung của a và b.

Bài 5 : Khoảng cách (ảnh 1)

Ví dụ 3. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC.

Lời giải :

Bài 5 : Khoảng cách (ảnh 1)

Do SAB⊥ABCD và BC  ⊥  AB⇒BC⊥SAB.

Vì tam giác SAB đều nên gọi M là trung điểm của SA thì BM⊥SA nên BM là đoạn vuông góc chung của BC và SA.

Vậy dSA;BC=BM=a32.

3. Nhận xét

a) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó đến mặt phẳng song song với nó và chứa đường thẳng còn lại.

b) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó.

Bài 5 : Khoảng cách (ảnh 1)

Ví dụ 4. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SA= a. Khoảng cách giữa hai đường thẳng SB và CD là

Lời giải :

Bài 5 : Khoảng cách (ảnh 1)

Vì SA⊥ABCD  ⇒SA ⊥AD.

Ta có: SA⊥ADAB⊥AD⇒AD⊥SAB⇒dD, SAB=DA.

Vì CD⊄SABCD  // ABAB⊂SAB

Suy ra: CD // (SAB) nên :

d(CD, SB) = d(CD, (SAB)) = d(D, (SAB)) = DA = a,

Đề thi liên quan

Xem thêm »
  • Trắc nghiệm tổng hơp Toán 11 (có đáp án) 76 đề 22949 lượt thi Thi thử
  • Trắc nghiệm Đề thi Toán 11 (có đáp án) 17 đề 8267 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 1: Hàm số lượng giác và phương trình lượng giác (có đáp án) 12 đề 4836 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 4: Giới hạn (có đáp án) 7 đề 4059 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Bài 3: Một số phương trình lượng giác thường gặp (có đáp án) 8 đề 3782 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 5: Đạo hàm (có đáp án) 11 đề 3715 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Ôn tập chương 2: Tổ hợp - Xác suất (có đáp án) 15 đề 3198 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Bài 1: Hàm số lượng giác (có đáp án) 6 đề 3132 lượt thi Thi thử
  • Trắc nghiệm Toán 11 Bài 2: Phương trình lượng giác cơ bản (có đáp án) 6 đề 3064 lượt thi Thi thử
  • Trắc nghiệm Biến cố và xác suất của biến cố có đáp án 4 đề 3042 lượt thi Thi thử
Xem thêm » Hỏi bài

Câu hỏi mới nhất

Xem thêm »
  • Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:

    \(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)

    với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).

    Khi quay một vòng lần thứ nhất tính từ thời điểm t = 0 (phút), tại thời điểm nào của t thì cabin ở vị trí cao nhất? Ở vị trí đạt được chiều cao là 86 m?

    Một vòng quay trò chơi có bán kính 57 m Khi quay một vòng lần thứ nhất tính từ (ảnh 1) 250 18/04/2024 Xem đáp án
  • Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:

    \(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)

    với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).

    Khi t = 0 (phút) thì khoảng cách từ cabin đến mặt đất bằng bao nhiêu?

    Một vòng quay trò chơi có bán kính 57 m Khi t = 0 (phút) thì khoảng cách từ cabin  (ảnh 1) 138 18/04/2024 Xem đáp án
  • Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:

    \(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)

    với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).

    Tính chu kì của hàm số h(t)?

    Một vòng quay trò chơi có bán kính 57 m Tính chu kì của hàm số h(t) (ảnh 1) 121 18/04/2024 Xem đáp án
  • Từ đồ thị hàm số y = sin x, tìm:

    Các khoảng giá trị của x để hàm số y = sin x nhận giá trị dương. 128 18/04/2024 Xem đáp án
  • Từ đồ thị hàm số y = sin x, tìm:

    Các giá trị của x để sin x = \(\frac{1}{2}\);

    121 18/04/2024 Xem đáp án
  • Từ đồ thị hàm số y = cos x, cho biết:

    Có bao nhiêu giá trị của x trên khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{3\pi }}{2}} \right)\) để cos x = 0.

    115 18/04/2024 Xem đáp án
  • Từ đồ thị hàm số y = cos x, cho biết:

    Có bao nhiêu giá trị của x trên đoạn [ – 5π; 0] để cos x = 1;

    118 18/04/2024 Xem đáp án
  • Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:

    y = cosx trên khoảng (19π; 20π), (– 30π; – 29π).

    121 18/04/2024 Xem đáp án
  • Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:

    y = sin x trên khoảng \(\left( { - \frac{{19\pi }}{2};\, - \frac{{17\pi }}{2}} \right),\,\,\left( { - \frac{{13\pi }}{2};\, - \frac{{11\pi }}{2}} \right)\);

    121 18/04/2024 Xem đáp án
  • Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số:

    \(y = \frac{1}{{4 - \sin x}}\).

    127 18/04/2024 Xem đáp án
Xem thêm »

Từ khóa » Hình Chóp S Abcd đáy Hình Thoi Ab=2a