[CHUẨN NHẤT] Mẹo đặt Nhân Tử Chung - TopLoigiai
Có thể bạn quan tâm
Câu hỏi: Mẹo đặt nhân tử chung?
Trả lời:
- Khi tất cả các số hạng của đa thức có một thừa số chung, ta đặt thừa số chung đó ra ngoài dấu ngoặc () để làm nhân tử chung.
- Các số hạng bên trong dấu () có được bằng cách lấy số hạng của đa thức chia cho nhân tử chung.
Chú ý: Nhiều khi để làm xuất hiện nhân tử chung ta cần đổi dấu các hạng tử.
Cùng Top lời giải tìm hiểu về mẹo đặt nhân tử chung và các cách phân tích đa thức thành nhân tử nhé!
Mục lục nội dung 1. Khái niệm:2. Ứng dụng của việc phân tích đa thức thành nhân tử:3. Phương pháp đặt nhân tử chung:4. Các cách phân tích đa thức thành nhân tử5. Bài tập vận dụng phương pháp đặt nhân tử chung1. Khái niệm:
Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.
2. Ứng dụng của việc phân tích đa thức thành nhân tử:
Việc phân tích đa thức thành nhân tử giúp chúng ta rút gọn được biểu thức, tính nhanh, giải phương trình.
3. Phương pháp đặt nhân tử chung:
Khi tất cả các số hạng của đa thức có một thừa số chung, ta đặt thừa số chung đó ra ngoài dấu ngoặc () để làm nhân tử chung.
Các số hạng bên trong dấu () có được bằng cách lấy số hạng của đa thức chia cho nhân tử chung.
Chú ý: Nhiều khi để làm xuất hiện nhân tử chung ta cần đổi dấu các hạng tử.
4. Các cách phân tích đa thức thành nhân tử
Có 8 cách phân tích đa thức thành nhan tử
- Phương pháp đặt nhân tử chung.
- Phương pháp dùng hằng đẳng thức.
- Phương pháp nhóm nhiều hạng tử
- Phương pháp tách.
- Phương pháp thêm bớt cùng một hạng tử
- Phương pháp đặt biến phụ
- Phương pháp giảm dần số mũ của lũy thừa.
- Phương pháp hệ số bất định.
5. Bài tập vận dụng phương pháp đặt nhân tử chung
Bài 1: Phân tích các đa thức sau thành nhân tử:
a) 3x – 6y; b) 2/5 x2 + 5x3 + x2y;
c) 14x2y – 21xy2 + 28x2y2; d) 2/5x(y – 1) – 2/5y(y – 1);
e) 10x(x – y) – 8y(y – x).
Lời giải:
a) 3x – 6y = 3 . x – 3 . 2y = 3(x – 2y)
b) 2/5 x2 + 5x3 + x2y = x2(2/5+ 5x + y)
c) 14x2y – 21xy2 + 28x2y2 = 7xy . 2x – 7xy . 3y + 7xy . 4xy = 7xy(2x – 3y + 4xy)
d) 2/5 x(y – 1) – 2/5y(y – 1) = 2/5(y – 1)(x – y)
e) 10x(x – y) – 8y(y – x) =10x(x – y) – 8y[-(x – y)]
= 10x(x – y) + 8y(x – y)
= 2(x – y)(5x + 4y)
Bài 2: Tính giá trị biểu thức:
a) 15 . 91,5 + 150 . 0,85;
b) x(x – 1) – y(1 – x) tại x = 2001 và y = 1999.
Lời giải:
a) 15 . 91,5 + 150 . 0,85 = 15 . 91,5 + 15 . 8,5
= 15(91,5 + 8,5) = 15 . 100 = 1500
b) x(x – 1) – y(1 – x) = x(x – 1) – y[-(x – 1)]
= x(x – 1) + y(x – 1)
= (x – 1)(x + y)
Tại x = 2001, y = 1999 ta được:
(2001 – 1)(2001 + 1999) = 2000 . 4000 = 8000000
Bài 3: Tìm x, biết:
a) 5x(x -2000) – x + 2000 = 0;
b) x3 – 13x = 0
Lời giải
a) 5x(x -2000) – x + 2000 = 0
5x(x -2000) – (x – 2000) = 0
(x – 2000)(5x – 1) = 0
Hoặc 5x – 1 = 0 => 5x = 1 => x =1/5
Vậy x =1/5; x = 2000
b) x3 – 13x = 0
x(x2 – 13) = 0
Hoặc x = 0
Hoặc x2 – 13 = 0 => x2 = 13 => x = ±√13
Vậy x = 0; x = ±√13
Bài 4: Chứng minh rằng 55n + 1 – 55n chia hết cho 54 (với n là số tự nhiên)
Bài giải:
55n + 1 – 55n chia hết cho 54 (n ∈ N)
Ta có 55n + 1 – 55n = 55n . 55 – 55n
= 55n (55 – 1)
= 55n . 54
Vì 54 chia hết cho 54 nên 55n . 54 luôn chia hết cho 54 với n là số tự nhiên.
Vậy 55n + 1 – 55n chia hết cho 54.
Bài 5: Tính nhanh:
a, 85.12,7 + 5.3.12,7
b, 52.143 – 52.39 – 8.26
Lời giải:
a, 85.12,7 + 5.3.12,7
= 12,7.(85 + 5.3)
= 12,7.100 = 1270
b, 52.143 – 52.39 – 8.26
= 52.143 – 52.39 – 52.4
= 52.(143 – 39 – 4)
= 52.100 = 5200
Bài 6: Phân tích thành nhân tử:
a, 5x – 20y
b, 5x(x – 1) – 3x(x – 1)
c, x(x + y) – 5x – 5y
Lời giải:
a, 5x – 20y = 5x – 5.4y = 5(x – 4y)
b, 5x(x – 1) – 3x(x – 1) = x(x – 1)(5 – 3) = 2x(x – 1)
c, x(x + y) – 5x – 5y = x(x + y) – 5(x + y) = (x + y)(x – 5)
Bài 7: Tính giá trị của các biểu thức sau:
a, x2 + xy + x tại x = 77 và y = 22
b, x(x – y) + y(y – x) tại x= 53 và y =3
Lời giải:
a, Ta có: x2 + xy + x = x(x + y + 1)
Thay x = 77, y = 22 vào biểu thức, ta được:
x(x + y + 1) = 77.(77 + 22 + 1) = 77.100 = 7700
b, Ta có: x(x – y) + y(y – x) = x(x – y) – y(x – y) = (x – y)(x – y) = (x – y)2
Thay x = 53, y = 3 vào biểu thức ta được:
(x – y)2 = (53 – 3)2 = 502 = 2500
Bài 8: Tìm x biết:
a, x + 5x2 = 0
b, x + 1 = (x + 1)2
c, x3 + x = 0
Lời giải:
a, Ta có: x + 5x2 = 0 ⇔ x(1 + 5x) = 0 ⇔ x = 0 hoặc 1 + 5x = 0
1 + 5x = 0 ⇒ x = - 1/5 . Vậy x = 0 hoặc x = - 1/5
b, Ta có: x + 1 = (x + 1)2
⇔ (x + 1)2 – (x + 1) = 0
⇔ (x + 1)[(x + 1) – 1] = 0
⇔ (x + 1).x = 0
⇔ x = 0 hoặc x + 1 = 0
x + 1 = 0 ⇒ x = -1.
Vậy x = 0 hoặc x = -1.
c, Ta có: x3 + x = 0 ⇒ x(x2 + 1) = 0
Vì x2 ≥ 0 nên x2 + 1 ≥ 1 với mọi x
Vậy x = 0
Bài 9: Chứng minh rằng: n2 (n + 1) + 2n(n + 1) luôn chia hết cho 6 với mọi số nguyên n.
Lời giải:
Ta có n2 (n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
Vì n và n + 1 là 2 số nguyên liên tiếp nên (n + 1) ⋮ 2
n, n + 1, n + 2 là 3 số nguyên liên tiếp,
nên n(n + 1)(n + 2) ⋮ 3 mà ƯCLN (2;3) = 1
vậy n(n + 1)(n + 2) ⋮ (2.3) = 6
Từ khóa » Bài Tập Về đặt Nhân Tử Chung
-
10 Bài Tập Phân Tích đa Thức Thành Nhân Tử Bằng Phương Pháp đặt ...
-
Dạng Bài Tập Phân Tích đa Thức Thành Nhân Tử
-
Phân Tích đa Thức Thành Nhân Tử Bằng Phương Pháp đặt Nhân Tử ...
-
Dạng Bài Tập Phân Tích Đa Thức Thành Nhân Tử Bằng Phương ...
-
Bài Tập Toán 8: Phân Tích đa Thức Thành Nhân Tử Bằng Phương Pháp ...
-
Bài Tập Phân Tích đa Thức Thành Nhân Tử (đặt Nhân Tử, Nhóm, Hằng ...
-
Phân Tích đa Thức Thành Nhân Tử Bằng Phương Pháp ...
-
100 Bài Tập Phân Tích đa Thức Thành Nhân Tử Có đáp án Và Lời Giải Chi ...
-
Phương Pháp đặt Nhân Tử Chung Và Bài Tập Vận Dụng - Toán Lớp 8
-
Bài Tập Phân Tích đa Thức Thành Nhân Tử Bằng Phương Pháp đặt ...
-
Phân Tích đa Thức Thành Nhân Tử Theo Pp đặt Nhân Tử Chung
-
ÔN TẬP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG ...
-
Bài 6: Phân Tích Đa Thức Thành Nhân Tử Bằng Phương Pháp Đặt ...
-
Trắc Nghiệm Phân Tích đa Thức Thành Nhân Tử Bằng Phương Pháp ...