Chứng Minh Phương Trình Có Nghiệm, Vô Nghiệm | Học Để Thi
Có thể bạn quan tâm
Dạng 2: Chứng minh phương trình có nghiệm, vô nghiệm.
Bài 1: Chứng minh rằng các phương trình sau luôn có nghiệm.
1) x2 – 2(m - 1)x – 3 – m = 0 ; 2) x2 + (m + 1)x + m = 0 ;
3) x2 – (2m – 3)x + m2 – 3m = 0 ; 4) x2 + 2(m + 2)x – 4m – 12 = 0 ;
5) x2 – (2m + 3)x + m2 + 3m + 2 = 0 ; 6) x2 – 2x – (m – 1)(m – 3) = 0 ;
7) x2 – 2mx – m2 – 1 = 0 ; 8) (m + 1)x2 – 2(2m – 1)x – 3 + m = 0
9) ax2 + (ab + 1)x + b = 0.
Bài 2:
a) Chứng minh rằng với a, b , c là các số thực thì phương trình sau luôn có nghiệm:
(x – a)(x – b) + (x – b)(x – c) + (x – c)(x – a) = 0
b) Chứng minh rằng với ba số thức a, b , c phân biệt thì phương trình sau có hai nghiệm phân biết:
c) Chứng minh rằng phương trình: c2x2 + (a2 – b2 – c2)x + b2 = 0 vô nghiệm với a, b, c là độ dài ba cạnh của một tam giác.
d) Chứng minh rằng phương trình bậc hai:
(a + b)2x2 – (a – b)(a2 – b2)x – 2ab(a2 + b2) = 0 luôn có hai nghiệm phân biệt.
Bài 3:
a) Chứng minh rằng ít nhất một trong các phương trình bậc hai sau đây có nghiệm:
ax2 + 2bx + c = 0 (1)
bx2 + 2cx + a = 0 (2)
cx2 + 2ax + b = 0 (3)
b) Cho bốn phương trình (ẩn x) sau:
x2 + 2ax + 4b2 = 0 (1)
x2 - 2bx + 4a2 = 0 (2)
x2 - 4ax + b2 = 0 (3)
x2 + 4bx + a2 = 0 (4)
Chứng minh rằng trong các phương trình trên có ít nhất 2 phương trình có nghiệm.
c) Cho 3 phương trình (ẩn x sau):
với a, b, c là các số dương cho trước.
Chứng minh rằng trong các phương trình trên có ít nhất một phương trình có nghiệm.
Bài 4:
a) Cho phương trình ax2 + bx + c = 0.
Biết a ≠ 0 và 5a + 4b + 6c = 0, chứng minh rằng phương trình đã cho có hai nghiệm.
b) Chứng minh rằng phương trình ax2 + bx + c = 0 ( a ≠ 0) có hai nghiệm nếu một trong hai điều kiện sau được thoả mãn:
a(a + 2b + 4c) < 0 ;
5a + 3b + 2c = 0.
Từ khóa » Chứng Minh Phương Trình Luôn Có Nghiệm Lớp 10
-
Chứng Minh Phương Trình Luôn Có Nghiệm Với Mọi M
-
Chứng Minh Phương Trình Luôn Có Nghiệm Với Mọi M Thuộc R - Lazi
-
Toán 10 - Chứng Minh Phương Trình Luôn Có Nghiệm Với Mọi M
-
Cách Chứng Minh Phương Trình Luôn Có Nghiệm Hay Nhất - TopLoigiai
-
Chứng Minh Phương Trình Luôn Có Nghiệm Với Mọi M Ôn Tập Toán 9
-
Tìm M để Phương Trình Sau Có Nghiệm
-
Chứng Minh Phương Trình Luôn Có Nghiệm Với Mọi M | Thần Chiến
-
Cách Chứng Minh Phương Trình Có Nghiệm Cực Hay, Chi Tiết
-
Chứng Minh Phương Trình Luôn Có Nghiệm Với Mọi M Lớp 10
-
Chứng Minh Phương Trình Luôn Có Nghiệm Với Mọi Giá Trị Của Tham Số
-
Chứng Minh Phương Trình Luôn Có Nghiệm Với Mọi M Lớp 9
-
Chứng Minh Phương Trình Có Nghiệm
-
Chứng Minh Phương Trình (1) Luôn Có Hai Nghiệm Phân Biệt Với Mọi ...
-
Chứng Minh Rằng Các Phương Trình Sau Vô Nghiệm Dù M Lấy Bất Kỳ ...