Công Thức Nhị Thức Newton đầy đủ

Công thức Nhị thức Newton đầy đủCông thức giải Toán 11 Tải về Nâng cấp gói Pro để trải nghiệm website VnDoc.com KHÔNG quảng cáo, và tải file cực nhanh không chờ đợi. Mua ngay Từ 79.000đ Tìm hiểu thêm

Công thức Nhị thức Newton nâng cao đầy đủ

  • I. Công thức Nhị thức Newton cơ bản và nâng cao
  • II. Bài tập ví dụ minh họa về nhị thức Newton
  • III. Bài tập tự luyện

VnDoc.com xin giới thiệu tới các bạn học sinh tài liệu Công thức Nhị thức Newton Toán 11. Bộ tài liệu tổng hợp cáccông thức khai triển Nhị thức Newton, tam giác Pascal và các bài tập ví dụ minh họa có hướng dẫn chi tiết giúp bạn đọc củng cố và nâng cao kiến thức Giải Tích 11... Mời các bạn cùng tham khảo chi tiết bài viết dưới đây. Chúc các bạn ôn tập hiệu quả!

Bản quyền thuộc về VnDoc.Nghiêm cấm mọi hình thức sao chép nhằm mục đích thương mại.

I. Công thức Nhị thức Newton cơ bản và nâng cao

1. Tổ hợp là gì?

Định nghĩa: Giả sử tập A cơ n phần tử. Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho.

Kí hiệu: C_{n}^{k}\(C_{n}^{k}\) là số tổ hợp chập k của n phần tử \left( 0\le k\le n \right)\(\left( 0\le k\le n \right)\). Ta có định lí, số các tổ hợp chập k của n phần tử đã cho.

C_{n}^{k}=\frac{n!}{k!\left( n-k \right)!}=\frac{\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)...\left( n-k+1 \right)}{k!}\(C_{n}^{k}=\frac{n!}{k!\left( n-k \right)!}=\frac{\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)...\left( n-k+1 \right)}{k!}\)

- Tính chất chập k của n phần tử: C_{n}^{k}\(C_{n}^{k}\)

  • Tính chất 1: C_{n}^{k}=C_{n}^{n-k},\left( 0\le k\le n \right)\(C_{n}^{k}=C_{n}^{n-k},\left( 0\le k\le n \right)\)
  • Tính chất 2: Công thức pascal C_{n-1}^{k-1}+C_{n-1}^{k}=C_{n}^{k}\(C_{n-1}^{k-1}+C_{n-1}^{k}=C_{n}^{k}\)

2. Công thức Nhị thức Newton

a. Định lí: Với \forall n\in {{\mathbb{N}}^{*}}\(\forall n\in {{\mathbb{N}}^{*}}\) với cặp số \left( a,b \right)\(\left( a,b \right)\)ta có:

{{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{C_{n}^{k}{{a}^{n-k}}}{{b}^{k}}=C_{n}^{0}{{a}^{n}}+C_{n}^{1}{{a}^{n-1}}b+C_{n}^{2}{{a}^{n-2}}{{b}^{2}}+...+C_{n}^{n-1}{{a}^{1}}{{b}^{n-1}}+C_{n}^{n}{{b}^{n}}\({{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{C_{n}^{k}{{a}^{n-k}}}{{b}^{k}}=C_{n}^{0}{{a}^{n}}+C_{n}^{1}{{a}^{n-1}}b+C_{n}^{2}{{a}^{n-2}}{{b}^{2}}+...+C_{n}^{n-1}{{a}^{1}}{{b}^{n-1}}+C_{n}^{n}{{b}^{n}}\)

b. Hệ quả

Hệ quả: {{\left( 1+x \right)}^{n}}=C_{n}^{0}+xC_{n}^{1}+{{x}^{2}}C_{n}^{2}+...+{{x}^{n}}C_{n}^{n}\({{\left( 1+x \right)}^{n}}=C_{n}^{0}+xC_{n}^{1}+{{x}^{2}}C_{n}^{2}+...+{{x}^{n}}C_{n}^{n}\)

- Từ hệ quả trên ta rút được những kết quả sau đây:

{{2}^{n}}=C_{n}^{0}+C_{n}^{1}+C_{n}^{2}+...+C_{n}^{n}\({{2}^{n}}=C_{n}^{0}+C_{n}^{1}+C_{n}^{2}+...+C_{n}^{n}\)

C_{n}^{0}-C_{n}^{1}+C_{n}^{2}-C_{n}^{3}+...+{{\left( -1 \right)}^{n}}C_{n}^{n}=0\(C_{n}^{0}-C_{n}^{1}+C_{n}^{2}-C_{n}^{3}+...+{{\left( -1 \right)}^{n}}C_{n}^{n}=0\)

c. Nhận xét

Trong khai triển Newton {{\left( a+b \right)}^{n}}\({{\left( a+b \right)}^{n}}\) có tính chất sau:

- Gồm n + 1 phần tử.

- Số mũ của a giảm từ n đến 0 và số mũ của b tăng từ 0 đến n.

- Tổng số mũ của a và b trong mỗi số hạng bằng n .

- Các hệ số có tính đối xứng C_{n}^{k}=C_{n}^{n-k},\left( 0\le k\le n \right)\(C_{n}^{k}=C_{n}^{n-k},\left( 0\le k\le n \right)\).

- Số hạng tổng quát: {{T}_{k+1}}=C_{n}^{k}{{a}^{b-k}}{{b}^{k}}\({{T}_{k+1}}=C_{n}^{k}{{a}^{b-k}}{{b}^{k}}\)

Chú ý:

  • Số hạng thứ nhất {{T}_{1}}={{T}_{0+1}}=C_{n}^{0}{{a}^{n}}\({{T}_{1}}={{T}_{0+1}}=C_{n}^{0}{{a}^{n}}\)
  • Số hạng thứ k: {{T}_{k}}={{T}_{k-1+1}}=C_{n}^{k-1}{{a}^{n-k+1}}{{b}^{k-1}}\({{T}_{k}}={{T}_{k-1+1}}=C_{n}^{k-1}{{a}^{n-k+1}}{{b}^{k-1}}\)

3. Các công thức liên quan đến khai triển nhị thức Newton

  • {{\left( x+1 \right)}^{n}}=C_{n}^{0}{{x}^{n}}+C_{n}^{1}{{x}^{n-1}}+C_{n}^{2}{{x}^{n-2}}+...+C_{n}^{k}{{x}^{n-k}}+...C_{n}^{n-1}x+C_{n}^{n}\({{\left( x+1 \right)}^{n}}=C_{n}^{0}{{x}^{n}}+C_{n}^{1}{{x}^{n-1}}+C_{n}^{2}{{x}^{n-2}}+...+C_{n}^{k}{{x}^{n-k}}+...C_{n}^{n-1}x+C_{n}^{n}\)
  • {{\left( 1+x \right)}^{n}}=C_{n}^{0}+C_{n}^{1}x+C_{n}^{2}{{x}^{2}}+...+C_{n}^{k}{{x}^{k}}+...C_{n}^{n-1}{{x}^{n-1}}+C_{n}^{n}{{x}^{n}}\({{\left( 1+x \right)}^{n}}=C_{n}^{0}+C_{n}^{1}x+C_{n}^{2}{{x}^{2}}+...+C_{n}^{k}{{x}^{k}}+...C_{n}^{n-1}{{x}^{n-1}}+C_{n}^{n}{{x}^{n}}\)
  • {{\left( x-1 \right)}^{n}}=C_{n}^{0}-C_{n}^{1}x+C_{n}^{2}{{x}^{2}}-...+{{\left( -1 \right)}^{k}}C_{n}^{k}{{x}^{k}}+...+{{\left( -1 \right)}^{n-1}}C_{n}^{n-1}{{x}^{n-1}}+{{\left( -1 \right)}^{n}}C_{n}^{n}{{x}^{n}}\({{\left( x-1 \right)}^{n}}=C_{n}^{0}-C_{n}^{1}x+C_{n}^{2}{{x}^{2}}-...+{{\left( -1 \right)}^{k}}C_{n}^{k}{{x}^{k}}+...+{{\left( -1 \right)}^{n-1}}C_{n}^{n-1}{{x}^{n-1}}+{{\left( -1 \right)}^{n}}C_{n}^{n}{{x}^{n}}\)
  • C_{n}^{k}=C_{n}^{n-k}\(C_{n}^{k}=C_{n}^{n-k}\)
  • C_{n}^{k}+C_{n}^{k+1}=C_{n+1}^{k+1},\left( n\ge 1 \right)\(C_{n}^{k}+C_{n}^{k+1}=C_{n+1}^{k+1},\left( n\ge 1 \right)\)
  • k.C_{n}^{k}=\frac{k.n!}{k!\left( n-k \right)!}==\frac{n.\left( n-1 \right)!}{\left( n-k \right)!.\left( k-1 \right)!}=n.C_{n-1}^{k-1}\(k.C_{n}^{k}=\frac{k.n!}{k!\left( n-k \right)!}==\frac{n.\left( n-1 \right)!}{\left( n-k \right)!.\left( k-1 \right)!}=n.C_{n-1}^{k-1}\)
  • \frac{1}{k+1}.C_{n}^{k}=\frac{k.n!}{\left( k+1 \right).k!\left( n-k \right)!}=\frac{n.\left( n-1 \right)!}{\left( n+1 \right)\left( n-k \right)!\left( k+1 \right)!}=\frac{1}{n+1}.C_{n+1}^{k+1}\(\frac{1}{k+1}.C_{n}^{k}=\frac{k.n!}{\left( k+1 \right).k!\left( n-k \right)!}=\frac{n.\left( n-1 \right)!}{\left( n+1 \right)\left( n-k \right)!\left( k+1 \right)!}=\frac{1}{n+1}.C_{n+1}^{k+1}\)

4. Một số công thức thường dùng trong các bài tập

  • C_{n}^{k}=C_{n}^{n-k}\(C_{n}^{k}=C_{n}^{n-k}\)
  • C_{n-1}^{k-1}+C_{n-1}^{k}=C_{n}^{k}\(C_{n-1}^{k-1}+C_{n-1}^{k}=C_{n}^{k}\)
  • k.C_{n}^{k}=n.C_{n-1}^{k-1}\(k.C_{n}^{k}=n.C_{n-1}^{k-1}\)
  • \frac{1}{k+1}.C_{n}^{k}=\frac{1}{n+1}.C_{n+1}^{k+1}\(\frac{1}{k+1}.C_{n}^{k}=\frac{1}{n+1}.C_{n+1}^{k+1}\)
  • {{2}^{n}}=C_{n}^{0}+C_{n}^{1}+C_{n}^{2}+...+C_{n}^{n}\({{2}^{n}}=C_{n}^{0}+C_{n}^{1}+C_{n}^{2}+...+C_{n}^{n}\)
  • {{2}^{n-1}}=C_{n}^{0}+C_{n}^{2}+{{C}_{n}}^{4}+...+C_{n}^{2\left[ \frac{n}{2} \right]}\({{2}^{n-1}}=C_{n}^{0}+C_{n}^{2}+{{C}_{n}}^{4}+...+C_{n}^{2\left[ \frac{n}{2} \right]}\)
  • {{2}^{n-1}}=C_{n}^{1}+C_{n}^{3}+C_{n}^{{}}+...+C_{n}^{2\left[ \frac{n-1}{2} \right]+1}\({{2}^{n-1}}=C_{n}^{1}+C_{n}^{3}+C_{n}^{{}}+...+C_{n}^{2\left[ \frac{n-1}{2} \right]+1}\)

5. Công thức Newton mở rộng

  • C_{n}^{k}+2C_{n}^{k+1}+C_{n}^{k+2}=C_{n+2}^{k+2}\(C_{n}^{k}+2C_{n}^{k+1}+C_{n}^{k+2}=C_{n+2}^{k+2}\)
  • C_{n}^{k}+3C_{n}^{k+1}+3C_{n}^{k+2}+C_{n}^{k+3}=C_{n+3}^{k+3}\(C_{n}^{k}+3C_{n}^{k+1}+3C_{n}^{k+2}+C_{n}^{k+3}=C_{n+3}^{k+3}\)

6. Dấu hiệu sử dụng nhị thức Newton

a. Chứng minh đẳng thức hay bất đẳng thức mà có: \sum\limits_{i=1}^{n}{C_{n}^{1}}\(\sum\limits_{i=1}^{n}{C_{n}^{1}}\)

b. Biểu thức có \sum\limits_{i=1}^{n}{i\left( i-1 \right)C_{n}^{i}}\(\sum\limits_{i=1}^{n}{i\left( i-1 \right)C_{n}^{i}}\) thì dùng đạo hàm

c. Biểu thức có \sum\limits_{i=1}^{n}{\left( i+k \right)C_{n}^{i}}\(\sum\limits_{i=1}^{n}{\left( i+k \right)C_{n}^{i}}\) thì ta nhân hai vế với {{x}^{k}}\({{x}^{k}}\) rồi lấy đạo hàm

d. Biểu thức có \sum\limits_{i=1}^{n}{{{a}^{k}}.C_{n}^{i}}\(\sum\limits_{i=1}^{n}{{{a}^{k}}.C_{n}^{i}}\) thì ta chọn giá trị x=a\(x=a\) thích hợp

e. Biểu thức có \sum\limits_{i=1}^{n}{\frac{1}{i-1}.C_{n}^{i}}\(\sum\limits_{i=1}^{n}{\frac{1}{i-1}.C_{n}^{i}}\) ta lấy tích phân xác định trên \left[ a,b \right]\(\left[ a,b \right]\) thích hợp

7. Tam giác Pascal

n=0                                            1

n=1                                   1              1

n=2                         1                2                1

n=3             1                   3              3                 1

n=4  1                   4                6                4                1

Tam giác Pascal được thiết lập theo quy luật

- Đỉnh được ghi số 1. Tiếp theo là hàng thứ nhất ghi hai số 1

- Nếu biết hàng thứ n thì hàng thứ n + 1 tiếp theo được thiết lập bằng cách cộng hai số liên tiếp của hàng thứ n rồi viết kết quả xuống hàng dưới ở vị trí giữa hai số này. Sau đó viết số 1 ở đầu và cuối hàng.

II. Bài tập ví dụ minh họa về nhị thức Newton

Ví dụ 1: Viết khai triển theo công thức nhị thức Newton:

a. {{\left( a+2b \right)}^{5}}\(a. {{\left( a+2b \right)}^{5}}\)b. {{\left( a-\sqrt{2} \right)}^{6}}\(b. {{\left( a-\sqrt{2} \right)}^{6}}\)c. {{\left( x-\frac{1}{x} \right)}^{10}}\(c. {{\left( x-\frac{1}{x} \right)}^{10}}\)

Hướng dẫn giải

a. Khai triển Newton của {{\left( a+2b \right)}^{5}}=\sum\limits_{k=0}^{5}{C_{5}^{k}{{a}^{5-k}}{{\left( 2b \right)}^{k}}}=\sum\limits_{k=0}^{5}{C_{5}^{k}{{a}^{5-k}}{{.2}^{k}}.{{b}^{k}}}\({{\left( a+2b \right)}^{5}}=\sum\limits_{k=0}^{5}{C_{5}^{k}{{a}^{5-k}}{{\left( 2b \right)}^{k}}}=\sum\limits_{k=0}^{5}{C_{5}^{k}{{a}^{5-k}}{{.2}^{k}}.{{b}^{k}}}\)

{{\left( a+2b \right)}^{5}}=C_{5}^{0}{{a}^{5}}+C_{5}^{1}{{a}^{4}}2b+...+C_{5}^{5}32{{b}^{5}}\({{\left( a+2b \right)}^{5}}=C_{5}^{0}{{a}^{5}}+C_{5}^{1}{{a}^{4}}2b+...+C_{5}^{5}32{{b}^{5}}\)

b. Khai triển Newton của {{\left( a-\sqrt{2} \right)}^{6}}=\sum\limits_{k=0}^{6}{C_{6}^{k}{{a}^{6-k}}{{\left( \sqrt{2} \right)}^{k}}}\({{\left( a-\sqrt{2} \right)}^{6}}=\sum\limits_{k=0}^{6}{C_{6}^{k}{{a}^{6-k}}{{\left( \sqrt{2} \right)}^{k}}}\)

{{\left( a-\sqrt{2} \right)}^{6}}=C_{6}^{0}{{a}^{6}}+C_{6}^{1}{{a}^{5}}.\sqrt{2}+C_{6}^{2}{{a}^{4}}.2+...+C_{6}^{6}.{{\left( \sqrt{2} \right)}^{6}}\({{\left( a-\sqrt{2} \right)}^{6}}=C_{6}^{0}{{a}^{6}}+C_{6}^{1}{{a}^{5}}.\sqrt{2}+C_{6}^{2}{{a}^{4}}.2+...+C_{6}^{6}.{{\left( \sqrt{2} \right)}^{6}}\)

c. Khai triển Newton của {{\left( x-\frac{1}{x} \right)}^{10}}=\sum\limits_{k=0}^{10}{C_{10}^{k}.{{x}^{10-k}}.{{\left( \frac{-1}{x} \right)}^{k}}=}\sum\limits_{k=0}^{10}{C_{10}^{k}.{{x}^{10-k}}.\frac{{{\left( -1 \right)}^{k}}}{{{x}^{k}}}=\sum\limits_{k=0}^{10}{C_{10}^{k}.{{\left( -1 \right)}^{k}}{{x}^{10-2k}}}}\({{\left( x-\frac{1}{x} \right)}^{10}}=\sum\limits_{k=0}^{10}{C_{10}^{k}.{{x}^{10-k}}.{{\left( \frac{-1}{x} \right)}^{k}}=}\sum\limits_{k=0}^{10}{C_{10}^{k}.{{x}^{10-k}}.\frac{{{\left( -1 \right)}^{k}}}{{{x}^{k}}}=\sum\limits_{k=0}^{10}{C_{10}^{k}.{{\left( -1 \right)}^{k}}{{x}^{10-2k}}}}\)

Ví dụ 2: Tìm hệ số của {{x}^{7}}\({{x}^{7}}\) trong khai triển biểu thức {{\left( 1-2x \right)}^{10}}\({{\left( 1-2x \right)}^{10}}\)

Hướng dẫn giải

Ta có: f\left( x \right)={{\left( 1-2x \right)}^{10}}=\sum\limits_{k=0}^{10}{C_{10}^{k}{{.1}^{10-k}}{{\left( -2x \right)}^{k}}=}\sum\limits_{k=0}^{10}{C_{n}^{k}.{{\left( -2 \right)}^{k}}.{{x}^{k}}}\(f\left( x \right)={{\left( 1-2x \right)}^{10}}=\sum\limits_{k=0}^{10}{C_{10}^{k}{{.1}^{10-k}}{{\left( -2x \right)}^{k}}=}\sum\limits_{k=0}^{10}{C_{n}^{k}.{{\left( -2 \right)}^{k}}.{{x}^{k}}}\)

Số hạng chứa {{x}^{7}}\({{x}^{7}}\) trong khai triển ứng với k = 7. Khi đó hệ số của số hạng chứa {{x}^{7}}:\({{x}^{7}}:\) C_{10}^{7}.{{\left( -2 \right)}^{7}}=-15360\(C_{10}^{7}.{{\left( -2 \right)}^{7}}=-15360\)

Ví dụ 3: Tìm hệ số không chứa x trong khai triển sau: {{\left( {{x}^{3}}-\frac{2}{x} \right)}^{n}}\({{\left( {{x}^{3}}-\frac{2}{x} \right)}^{n}}\)biết rằng: C_{n}^{n-1}+C_{n}^{n-2}=78,x0\(C_{n}^{n-1}+C_{n}^{n-2}=78,x>0\)

Hướng dẫn giải

Ta có: C_{n}^{n-1}+C_{n}^{n-2}=78,n2\(C_{n}^{n-1}+C_{n}^{n-2}=78,n>2\)

\Leftrightarrow \frac{n!}{\left( n-1 \right)!(n-n+1)!}+\frac{n!}{\left( n-2 \right)!\left( n-2+2 \right)!}=78\(\Leftrightarrow \frac{n!}{\left( n-1 \right)!(n-n+1)!}+\frac{n!}{\left( n-2 \right)!\left( n-2+2 \right)!}=78\)

\Leftrightarrow \frac{n!}{\left( n-1 \right)!(1)!}+\frac{n!}{\left( n-2 \right)!\left( 2 \right)!}=78\(\Leftrightarrow \frac{n!}{\left( n-1 \right)!(1)!}+\frac{n!}{\left( n-2 \right)!\left( 2 \right)!}=78\)

\Leftrightarrow n+\frac{n\left( n-1 \right)}{2}=78\Leftrightarrow {{n}^{2}}+n-156=0\Leftrightarrow \left[ \begin{matrix}  n=12\left( TM \right) \\  n=-13\left( L \right) \\  \end{matrix} \right.\(\Leftrightarrow n+\frac{n\left( n-1 \right)}{2}=78\Leftrightarrow {{n}^{2}}+n-156=0\Leftrightarrow \left[ \begin{matrix} n=12\left( TM \right) \\ n=-13\left( L \right) \\ \end{matrix} \right.\)

Do đó biểu thức khai triển là {{\left( {{x}^{3}}-\frac{2}{x} \right)}^{12}}=\sum\limits_{k=0}^{12}{C_{12}^{k}{{\left( {{x}^{3}} \right)}^{12-k}}{{\left( -\frac{2}{x} \right)}^{k}}}\({{\left( {{x}^{3}}-\frac{2}{x} \right)}^{12}}=\sum\limits_{k=0}^{12}{C_{12}^{k}{{\left( {{x}^{3}} \right)}^{12-k}}{{\left( -\frac{2}{x} \right)}^{k}}}\)

=\sum\limits_{k=0}^{12}{C_{12}^{k}.{{x}^{36-3k}}.{{\left( \frac{1}{x} \right)}^{k}}.{{\left( -2 \right)}^{k}}}=\sum\limits_{k=0}^{12}{C_{12}^{k}.{{x}^{36-4k}}.{{\left( -2 \right)}^{k}}}\(=\sum\limits_{k=0}^{12}{C_{12}^{k}.{{x}^{36-3k}}.{{\left( \frac{1}{x} \right)}^{k}}.{{\left( -2 \right)}^{k}}}=\sum\limits_{k=0}^{12}{C_{12}^{k}.{{x}^{36-4k}}.{{\left( -2 \right)}^{k}}}\)

Số hạng không chứa x ứng với k: 36-4k=0\Leftrightarrow k=9\(36-4k=0\Leftrightarrow k=9\)

Số hạng không chưa x là: C_{12}^{9}.{{\left( -2 \right)}^{9}}=-112640\(C_{12}^{9}.{{\left( -2 \right)}^{9}}=-112640\)

Ví dụ 4: Xét khai triển: {{\left( 2x+\frac{1}{x} \right)}^{20}}\({{\left( 2x+\frac{1}{x} \right)}^{20}}\)

a. Viết số hạng thứ k + 1 trong khai triển.

b. Số hạng nào trong khai triển không chứa x.

c. Xác định hệ số của \[{{x}^{4}}\]trong khai triển.

Hướng dẫn giải

{{\left( 2x+\frac{1}{x} \right)}^{20}}=\sum\limits_{k=0}^{20}{C_{20}^{k}{{\left( 2x \right)}^{20-k}}{{\left( \frac{1}{x} \right)}^{k}}=}\sum\limits_{k=0}^{20}{C_{20}^{k}{{2}^{20-k}}{{x}^{20-2k}}}\({{\left( 2x+\frac{1}{x} \right)}^{20}}=\sum\limits_{k=0}^{20}{C_{20}^{k}{{\left( 2x \right)}^{20-k}}{{\left( \frac{1}{x} \right)}^{k}}=}\sum\limits_{k=0}^{20}{C_{20}^{k}{{2}^{20-k}}{{x}^{20-2k}}}\)

Số hạng không chứa x trong khai triển ứng với k là: 20-2k=0\Leftrightarrow k=10\(20-2k=0\Leftrightarrow k=10\)

Số hạng không chứa x trong khai triển là: C_{20}^{10}{{.2}^{10}}\(C_{20}^{10}{{.2}^{10}}\)

Số hạng chứa {{x}^{4}}\({{x}^{4}}\) trong khai triển ứng với k là: 20-2k=4\Leftrightarrow k=8\(20-2k=4\Leftrightarrow k=8\)

Vậy số hạng chứa {{x}^{4}}\({{x}^{4}}\) trong khai triển có hệ số là: C_{20}^{8}{{.2}^{12}}\(C_{20}^{8}{{.2}^{12}}\)

Ví dụ 5: Tính tổng: S=\frac{1}{2}C_{n}^{0}-\frac{1}{4}c_{n}^{1}+\frac{1}{6}C_{n}^{3}-\frac{1}{8}C_{n}^{4}+...+\frac{\left( -1 \right)}{2\left( n+1 \right)}C_{n}^{n}\(S=\frac{1}{2}C_{n}^{0}-\frac{1}{4}c_{n}^{1}+\frac{1}{6}C_{n}^{3}-\frac{1}{8}C_{n}^{4}+...+\frac{\left( -1 \right)}{2\left( n+1 \right)}C_{n}^{n}\)

Hướng dẫn giải

Ta có: S=\frac{1}{2}\left( C_{n}^{0}-\frac{1}{2}c_{n}^{1}+\frac{1}{3}C_{n}^{3}-\frac{1}{4}C_{n}^{4}+...+\frac{\left( -1 \right)}{n+1}C_{n}^{n} \right)\(S=\frac{1}{2}\left( C_{n}^{0}-\frac{1}{2}c_{n}^{1}+\frac{1}{3}C_{n}^{3}-\frac{1}{4}C_{n}^{4}+...+\frac{\left( -1 \right)}{n+1}C_{n}^{n} \right)\)

\frac{{{\left( -1 \right)}^{k}}}{k+1}C_{n}^{k}=\frac{{{\left( -1 \right)}^{k}}}{k+1}C_{n+1}^{k+1}\(\frac{{{\left( -1 \right)}^{k}}}{k+1}C_{n}^{k}=\frac{{{\left( -1 \right)}^{k}}}{k+1}C_{n+1}^{k+1}\)

\Leftrightarrow S=\frac{1}{2\left( n+1 \right)}\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}C_{n+1}^{k+1}}=\frac{-1}{2\left( n+1 \right)}\left( \sum\limits_{k=0}^{n+1}{{{\left( -1 \right)}^{k}}C_{n+1}^{k}-C_{n+1}^{0}} \right)=\frac{1}{2\left( n+1 \right)}\(\Leftrightarrow S=\frac{1}{2\left( n+1 \right)}\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}C_{n+1}^{k+1}}=\frac{-1}{2\left( n+1 \right)}\left( \sum\limits_{k=0}^{n+1}{{{\left( -1 \right)}^{k}}C_{n+1}^{k}-C_{n+1}^{0}} \right)=\frac{1}{2\left( n+1 \right)}\)

III. Bài tập tự luyện

Bài 1: Viết khai triển theo công thức nhị thức Newton:

a. {{\left( 1+2x \right)}^{20}}\(a. {{\left( 1+2x \right)}^{20}}\)

b.{{\left( x+\frac{1}{3x} \right)}^{11}}\(b.{{\left( x+\frac{1}{3x} \right)}^{11}}\)

c. {{\left( \sqrt{x}-4x+6 \right)}^{8}}\(c. {{\left( \sqrt{x}-4x+6 \right)}^{8}}\)

d. {{\left( n+2m \right)}^{7}}\(d. {{\left( n+2m \right)}^{7}}\)

Bài 2: Xét khai triển {{\left( 3{{x}^{2}}+\frac{1}{x} \right)}^{30}}\({{\left( 3{{x}^{2}}+\frac{1}{x} \right)}^{30}}\)

a. Tìm số hạng không chứa x trong khai triển.

b. Hệ số của số hạng chứa {{x}^{6}}\({{x}^{6}}\) trong khai triển.

c. Số hạng thứ 11 trong khai triển.

Bài 3: Tính tổng: S=C_{2n}^{0}+C_{2n}^{2}+C_{2n}^{4}+C_{2n}^{6}+...+C_{2n}^{2n}\(S=C_{2n}^{0}+C_{2n}^{2}+C_{2n}^{4}+C_{2n}^{6}+...+C_{2n}^{2n}\)

Bài 4: Tổng các hệ số nhị thức Newton trong khai triển {{\left( 1+x \right)}^{3n}}\({{\left( 1+x \right)}^{3n}}\) là 64. Số hạng không chứa x trong khai triển {{\left( 2nx+\frac{1}{2nx} \right)}^{2n}}.\({{\left( 2nx+\frac{1}{2nx} \right)}^{2n}}.\)

Bài 5: Tìm số nguyên dương bé nhất n sao cho trong khai triển {{\left( 1+x \right)}^{n}}\({{\left( 1+x \right)}^{n}}\) có hai hệ số liên tiếp có tỉ số là 7:15.

--------------------------------------------------

Trên đây VnDoc đã giới thiệu tới bạn đọc tài liệu: Công thức Nhị thức Newton đầy đủ. Bài viết cho chúng ta thấy được các công thức Nhị thức Newton cơ bản và nâng cao, kèm theo đó là những bài tập vận dụng giúp bạn đọc có thể rèn luyện được công thức.... Hi vọng qua bài viết này bạn đọc có thêm nhiều tài liệu để học tập tốt hơn môn Toán lớp 11 nhé. Mời bạn đọc cùng tham khảo thêm mục Giải bài tập Toán 11

Mời bạn đọc tham khảo thêm một số tài liệu:

  • Hàm số liên tục lớp 11
  • Xét hàm số liên tục tại một điểm
  • Xét hàm số liên tục trên một tập
  • Xác định tham số để hàm số liên tục
  • Bảng công thức lượng giác dùng cho lớp 10 - 11 - 12
  • Tóm tắt toàn bộ lý thuyết và công thức Hình học 11
  • Trắc nghiệm Toán lớp 11 theo từng chương

Tham khảo thêm

  • Ứng dụng của hàm số liên tục môn Toán lớp 11

  • Bài tập Đạo hàm

  • Giải bài tập trang 36, 37 SGK Giải tích 11: Một số phương trình lượng giác thường gặp

  • Cách tính nhanh đạo hàm

  • Tìm tập xác định của hàm số lượng giác

  • Trọng tâm của tứ diện là gì?

  • Bảng công thức lượng giác dùng cho lớp 10 - 11 - 12

  • Tứ diện đều

  • Tóm tắt toàn bộ lý thuyết và công thức Hình học 11

  • Bài tập trắc nghiệm Xác suất (Có đáp án)

Từ khóa » Ct Số Hạng Tổng Quát Nhị Thức Niu Tơn